Confident assignment of intact mass tags to human salivary cystatins using top-down Fourier-transform ion cyclotron resonance mass spectrometry

  • Christopher M. Ryan
  • Puneet Souda
  • Frederic Halgand
  • David T. Wong
  • Joseph A. Loo
  • Kym F. Faull
  • Julian P. WhiteleggeEmail author
Focus: Top-Down Mass Spectrometry


A hybrid linear ion-trap Fourier-transform ion cyclotron resonance mass spectrometer was used for top-down characterization of the abundant human salivary cystatins, including S, S1, S2, SA, SN, C, and D, using collisionally activated dissociation (CAD) after chromatographic purification of the native, disulfide intact proteins. Post-translational modifications and protein sequence polymorphisms arising from single nucleotide polymorphisms (SNPs) were assigned from precursor and product ion masses at a tolerance of 10 ppm, allowing confident identification of individual intact mass tags. Cystatins S, S1, S2, SA, and SN were cleaved of a N-terminal 20 amino acid signal peptide and cystatin C a 26-residue peptide, to yield a generally conserved N-terminus. In contrast, cystatin D isoforms with 24 and 28 amino acid residue N-terminal truncations were found such that their N-termini were not conserved. Cystatin S1 was phosphorylated at Ser3, while S2 was phosphorylated at Ser1 and Ser3, in agreement with previous work. Both cystatin D isoforms carried the polymorphism C46R (SNP: rs1799841). The 14,328 Da isoform of cystatin SN previously assigned with polymorphism P31L due to a SNP (rs2070856) was found only in whole saliva. Parotid secretions contained no detectable cystatins while whole saliva largely mirrored the contents of submandibular/sublingual (SMSL) secretions. With fully characterized cystatin intact mass tags it will now be possible to examine the correlation between the abundance of these molecules and human health and disease.


Monoisotopic Mass Amino Acid Signal Peptide Human Cystatin Cystatin Family C46R Polymorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

13361_2011_210600908_MOESM1_ESM.ppt (3.2 mb)
Supplementary material, approximately 3391 KB.


  1. 1.
    Kelleher, N. L.; Hong, L. Y.; Valaskovic, G. A.; Aaserud, D. J.; Fridriksson, E. K.; McLafferty, F. W. Top Down Versus Bottom Up Protein Characterization by Tandem High-Resolution Mass Spectrometry. J. Am. Chem. Soc. 1999, 121, 806–807.CrossRefGoogle Scholar
  2. 2.
    Henry, K. D.; Williams, E. R.; Wang, B. H.; McLafferty, F. W.; Shabanowitz, J.; Hunt, D. F. Fourier-Transform Mass Spectrometry of Large Molecules by Electrospray Ionization. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 9075–9078.CrossRefGoogle Scholar
  3. 3.
    Loo, J. A.; Edmonds, C. G.; Smith, R. D. Primary Sequence Information from Intact Proteins by Electrospray Ionization Tandem Mass Spectrometry. Science 1990, 248, 201–204.CrossRefGoogle Scholar
  4. 4.
    Mortz, E.; O’Connor, P. B.; Roepstorff, P.; Kelleher, N. L.; Wood, T. D.; McLafferty, F. W.; Mann, M. Sequence Tag Identification of Intact Proteins by Matching Tandem Mass Spectral Data Against Sequence Data Bases. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 8264–8267.CrossRefGoogle Scholar
  5. 5.
    Edgar, W. M. Saliva: Its Secretion, Composition, and Functions. Br. Dent. J. 1992, 172, 305–312.CrossRefGoogle Scholar
  6. 6.
    Kaufman, E.; Lamster, I. B. The Diagnostic Applications of Saliva—a Review. Crit. Rev. Oral Biol. Med. 2002, 13, 197–212.CrossRefGoogle Scholar
  7. 7.
    Rathman, W. M.; Van Zeyl, M. J.; Van den Keybus, P. A.; Bank, R. A.; Veerman, E. C.; Nieuw-Amerongen, A. V. Isolation and Characterization of Three Nonmucinous Human Salivary Proteins with Affinity for Hydroxyapatite. J. Biol. Buccale 1989, 17, 199–208.Google Scholar
  8. 8.
    Aguirre, A.; Testa-Weintraub, L. A.; Banderas, J. A.; Dunford, R.; Levine, M. J. Levels of Salivary Cystatins in Periodontally Healthy and Diseased Older Adults. Arch. Oral Biol. 1992, 37, 355–361.CrossRefGoogle Scholar
  9. 9.
    Lupi, A.; Messana, I.; Denotti, G.; Schinina, M. E.; Gambarini, G.; Fadda, M. B.; Vitali, A.; Cabras, T.; Piras, V.; Patamia, M.; Cordaro, M.; Giardina, B.; Castagnola, M. Identification of the Human Salivary Cystatin Complex by the Coupling of High-Performance Liquid Chromatography and Ion-Trap Mass Spectrometry. Proteomics 2003, 3, 461–467.CrossRefGoogle Scholar
  10. 10.
    Alvarez-Fernandez, M.; Liang, Y. H.; Abrahamson, M.; Su, X. D. Crystal Structure of Human Cystatin D, a Cysteine Peptidase Inhibitor with Restricted Inhibition Profile. J. Biol. Chem. 2005, 280, 18221–18228.CrossRefGoogle Scholar
  11. 11.
    Shah, A. B. B. Cystatins in Health and Diseases. J. Pept. Res. Therapeut. 2009, 15, 43–48.CrossRefGoogle Scholar
  12. 12.
    Terpos, E.; Katodritou, E.; Tsiftsakis, E.; Kastritis, E.; Christoulas, D.; Pouli, A.; Michalis, E.; Verrou, E.; Anargyrou, K.; Tsionos, K.; Dimopoulos, M. A.; Zervas, K. Cystatin-C is an Independent Prognostic Factor for Survival in Multiple Myeloma and Is Reduced by Bortezomib Administration. Haematologica 2009, 94, 372–379.CrossRefGoogle Scholar
  13. 13.
    Chudleigh, R. A.; Ollerton, R. L.; Dunseath, G.; Peter, R.; Harvey, J. N.; Luzio, S.; Owens, D. R. Use of Cystatin C-Based Estimations of Glomerular Filtration Rate in Patients with Type 2 Diabetes. Diabetologia 2009, 52, 1274–1278.CrossRefGoogle Scholar
  14. 14.
    Naruse, H.; Ishii, J.; Kawai, T.; Hattori, K.; Ishikawa, M.; Okumura, M.; Kan, S.; Nakano, T.; Matsui, S.; Nomura, M.; Hishida, H.; Ozaki, Y. Cystatin C in Acute Heart Failure Without Advanced Renal Impairment. Am. J. Med. 2009, 122, 566–573.CrossRefGoogle Scholar
  15. 15.
    Hanrieder, J.; Wetterhall, M.; Enblad, P.; Hillered, L.; Bergquist, J. Temporally Resolved Differential Proteomic Analysis of Human Ventricular CSF for Monitoring Traumatic Brain Injury Biomarker Candidates. J. Neurosci. Methods 2009, 177, 469–478.CrossRefGoogle Scholar
  16. 16.
    Tsuji-Akimoto, S.; Yabe, I.; Niino, M.; Kikuchi, S.; Sasaki, H. Cystatin C in Cerebrospinal Fluid as a Biomarker of ALS. Neurosci. Lett. 2009, 452, 52–55.CrossRefGoogle Scholar
  17. 17.
    Yoneda, K.; Iida, H.; Endo, H.; Hosono, K.; Akiyama, T.; Takahashi, H.; Inamori, M.; Abe, Y.; Yoneda, M.; Fujita, K.; Kato, S.; Nozaki, Y.; Ichikawa, Y.; Uozaki, H.; Fukayama, M.; Shimamura, T.; Kodama, T.; Aburatani, H.; Miyazawa, C.; Ishii, K.; Hosomi, N.; Sagara, M.; Takahashi, M.; Ike, H.; Saito, H.; Kusakabe, A.; Nakajima, A. Identification of Cystatin SN as a Novel Tumor Marker for Colorectal Cancer. Int. J. Oncol. 2009, 35, 33–40.Google Scholar
  18. 18.
    Shintani, S.; Hamakawa, H.; Ueyama, Y.; Hatori, M.; Toyoshima, T. Identification of a Truncated Cystatin SA-I as a Saliva Biomarker for Oral Squamous Cell Carcinoma Using the SELDI ProteinChip Platform. Int. J. Oral Maxillofac. Surg. 2009.Google Scholar
  19. 19.
    Rudney, J. D.; Staikov, R. K.; Johnson, J. D. Potential Biomarkers of Human Salivary Function: A Modified Proteomic Approach. Arch. Oral Biol. 2009, 54, 91–100.CrossRefGoogle Scholar
  20. 20.
    Denny, P.; Hagen, F. K.; Hardt, M.; Liao, L.; Yan, W.; Arellanno, M.; Bassilian, S.; Bedi, G. S.; Boontheung, P.; Cociorva, D.; Delahunty, C. M.; Denny, T.; Dunsmore, J.; Faull, K. F.; Gilligan, J.; Gonzalez-Begne, M.; Halgand, F.; Hall, S. C.; Han, X.; Henson, B.; Hewel, J.; Hu, S.; Jeffrey, S.; Jiang, J.; Loo, J. A.; Ogorzalek Loo, R. R.; Malamud, D.; Melvin, J. E.; Miroshnychenko, O.; Navazesh, M.; Niles, R.; Park, S. K.; Prakobphol, A.; Ramachandran, P.; Richert, M.; Robinson, S.; Sondej, M.; Souda, P.; Sullivan, M. A.; Takashima, J.; Than, S.; Wang, J.; Whitelegge, J. P.; Witkowska, H. E.; Wolinsky, L.; Xie, Y.; Xu, T.; Yu, W.; Ytterberg, J.; Wong, D. T.; Yates, J. R. III; Fisher, S. J. The Proteomes of Human Parotid and Submandibular/Sublingual Gland Salivas Collected as the Ductal Secretions. J. Proteome Res. 2008, 7, 1994–2006.CrossRefGoogle Scholar
  21. 21.
    Whitelegge, J. P.; Gundersen, C. B.; Faull, K. F. Electrospray-Ionization Mass Spectrometry of Intact Intrinsic Membrane Proteins. Protein Sci. 1998, 7, 1423–1430.CrossRefGoogle Scholar
  22. 22.
    Zabrouskov, V.; Whitelegge, J. P. Increased Coverage in the Transmembrane Domain with Activated-Ion Electron Capture Dissociation for Top-Down Fourier-Transform Mass Spectrometry of Integral Membrane Proteins. J. Proteome Res. 2007, 6, 2205–2210.CrossRefGoogle Scholar
  23. 23.
    Whitelegge, J. P.; Zhang, H.; Aguilera, R.; Taylor, R. M.; Cramer, W. A. Full Subunit Coverage Liquid Chromatography Electrospray Ionization Mass Spectrometry (LCMS +) of an Oligomeric Membrane Protein: Cytochrome b(6)f Complex from Spinach and the Cyanobacterium Mastigocladus laminosus. Mol. Cell. Proteom. 2002, 1, 816–827.CrossRefGoogle Scholar
  24. 24.
    Veerman, E. C.; van den Keybus, P. A.; Vissink, A.; Nieuw-Amerongen, A. V. Human Glandular Salivas: Their Separate Collection and Analysis. Eur. J. Oral Sci. 1996, 104, 346–352.CrossRefGoogle Scholar
  25. 25.
    Messana, I.; Cabras, T.; Pisano, E.; Sanna, M. T.; Olianas, A.; Manconi, B.; Pellegrini, M.; Paludetti, G.; Scarano, E.; Fiorita, A.; Agostino, S.; Contucci, A. M.; Calo, L.; Picciotti, P. M.; Manni, A.; Bennick, A.; Vitali, A.; Fanali, C.; Inzitari, R.; Castagnola, M. Trafficking and Postsecretory Events Responsible for the Formation of Secreted Human Salivary Peptides: A Proteomics Approach. Mol. Cell. Proteom. 2008, 7, 911–926.CrossRefGoogle Scholar
  26. 26.
    Whitelegge, J. P.; Zabrouskov, V.; Halgand, F.; Souda, P.; Bassilian, S.; Yan, W.; Wolinsky, L.; Loo, J. A.; Wong, D. T.; Faull, K. F. Protein-Sequence Polymorphisms and Post-Translational Modifications in Proteins from Human Saliva using Top-Down Fourier-transform Ion Cyclotron Resonance Mass Spectrometry. Int. J. Mass Spectrom. 2007, 268, 190–197.CrossRefGoogle Scholar
  27. 27.
    Gomez, S. M.; Nishio, J. N.; Faull, K. F.; Whitelegge, J. P. The Chloroplast Grana Proteome Defined by Intact Mass Measurements from Liquid Chromatography Mass Spectrometry. Mol. Cell. Proteom. 2002, 1, 46–59.CrossRefGoogle Scholar
  28. 28.
    Isemura, S.; Saitoh, E.; Sanada, K.; Minakata, K. Identification of Full-Sized Forms of Salivary (S-Type) Cystatins (Cystatin SN, Cystatin SA, Cystatin S, and Two Phosphorylated Forms of Cystatin S) in Human Whole Saliva and Determination of Phosphorylation Sites of Cystatin S. J. Biochem. 1991, 110, 648–654.Google Scholar
  29. 29.
    Johnsson, M.; Richardson, C. F.; Bergey, E. J.; Levine, M. J.; Nancollas, G. H. The Effects of Human Salivary Cystatins and Statherin on Hydroxyapatite Crystallization. Arch. Oral Biol. 1991, 36, 631–636.CrossRefGoogle Scholar
  30. 30.
    Ramasubbu, N.; Reddy, M. S.; Bergey, E. J.; Haraszthy, G. G.; Soni, S. D.; Levine, M. J. Large-Scale Purification and Characterization of the Major Phosphoproteins and Mucins of Human Submandibular-Sublingual Saliva. Biochem. J. 1991, 280, 341–352.Google Scholar
  31. 31.
    Grubb, A.; Loefberg, H.; Barrett, A. J. The Disulphide Bridges of Human Cystatin C (γ-trace) and Chicken Cystatin. FEBS Lett. 1984, 170, 370–374.CrossRefGoogle Scholar
  32. 32.
    Hu, S.; Denny, P.; Xie, Y.; Loo, J. A.; Wolinsky, L. E.; Li, Y.; McBride, J.; Ogorzalek Loo, R. R.; Navazesh, M.; Wong, D. T. Differentially Expressed Protein Markers in Human Submandibular and Sublingual Secretions. Int. J. Oncol. 2004, 25, 1423–1430.Google Scholar
  33. 33.
    Messana, I.; Inzitari, R.; Fanali, C.; Cabras, T.; Castagnola, M. Facts and Artifacts in Proteomics of Body Fluids. What Proteomics of Saliva is Telling Us? J. Sep. Sci. 2008, 31, 1948–1963.CrossRefGoogle Scholar
  34. 34.
    Cabras, T.; Pisano, E.; Boi, R.; Olianas, A.; Manconi, B.; Inzitari, R.; Fanali, C.; Giardina, B.; Castagnola, M.; Messana, I. Age-Dependent Modifications of the Human Salivary Secretory Protein Complex. J. Proteome Res. 2009, 8, 4126–4134.CrossRefGoogle Scholar
  35. 35.
    Castagnola, M.; Messana, I.; Inzitari, R.; Fanali, C.; Cabras, T.; Morelli, A.; Pecoraro, A. M.; Neri, G.; Torrioli, M. G.; Gurrieri, F. Hypo-Phosphorylation of Salivary Peptidome as a Clue to the Molecular Pathogenesis of Autism Spectrum Disorders. J. Proteome Res. 2008, 7(12), 5327–5332.CrossRefGoogle Scholar
  36. 36.
    Higgins, D. G. CLUSTAL V: Multiple Slignment of DNA and Protein Sequences. Methods Mol. Biol. 1994, 25, 307–318.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Christopher M. Ryan
    • 1
  • Puneet Souda
    • 1
  • Frederic Halgand
    • 1
    • 7
  • David T. Wong
    • 2
    • 3
    • 4
  • Joseph A. Loo
    • 4
    • 5
  • Kym F. Faull
    • 1
    • 4
    • 6
  • Julian P. Whitelegge
    • 1
    • 4
    • 6
    Email author
  1. 1.The Pasarow Mass Spectrometry Laboratory, The NPI-Semel Institute for Neuroscience and Human Behavior, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesUSA
  2. 2.School of DentistryUniversity of California Los AngelesLos AngelesUSA
  3. 3.Dental Research InstituteUniversity of California Los AngelesLos AngelesUSA
  4. 4.The Molecular Biology InstituteUniversity of California Los AngelesLos AngelesUSA
  5. 5.Departments of Chemistry and Biochemistry and Biological ChemistryUniversity of California Los AngelesLos AngelesUSA
  6. 6.The Brain Research InstituteUniversity of California Los AngelesLos AngelesUSA
  7. 7.Equipe de protéomique fonctionnelle et dynamique, BIP (Bioénergétique et Ingénierie des Protéines)CNRSMarseilleFrance

Personalised recommendations