Structural analysis of prion proteins by means of drift cell and traveling wave ion mobility mass spectrometry

  • Gillian R. Hilton
  • Konstantinos Thalassinos
  • Megan Grabenauer
  • Narinder Sanghera
  • Susan E. Slade
  • Thomas Wyttenbach
  • Philip J. Robinson
  • Teresa J. T. Pinheiro
  • Michael T. Bowers
  • James H. Scrivens
Articles

Abstract

The prion protein (PrP) is implicitly involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs). The conversion of normal cellular PrP (PrPC), a protein that is predominantly α-helical, to a β-sheet-rich isoform (PrPSc), which has a propensity to aggregate, is the key molecular event in prion diseases. During its short life span, PrP can experience two different pH environments; a mildly acidic environment, whilst cycling within the cell, and a neutral pH when it is glycosyl phosphatidylinositol (GPI)-anchored to the cell membrane. Ion mobility (IM) combined with mass spectrometry has been employed to differentiate between two conformational isoforms of recombinant Syrian hamster prion protein (SHaPrP). The recombinant proteins studied were α-helical SHaPrP(90-231) and β-sheet-rich SHaPrP(90-231) at pH 5.5 and pH 7.0. The recombinant proteins have the same nominal mass-to-charge ratio (m/z) but differ in their secondary and tertiary structures. A comparison of traveling-wave (T-Wave) ion mobility and drift cell ion mobility (DCIM) mass spectrometry estimated and absolute cross-sections showed an excellent agreement between the two techniques. The use of T-Wave ion mobility as a shape-selective separation technique enabled differentiation between the estimated cross-sections and arrival time distributions (ATDs) of α-helical SHaPrP(90-231) and β-sheet-rich SHaPrP(90-231) at pH 5.5. No differences in cross-section or ATD profiles were observed between the protein isoforms at pH 7.0. The findings have potential implications for a new ante-mortem screening assay, in bodily fluids, for prion misfolding diseases such as TSEs.

Supplementary material

13361_2011_210500845_MOESM1_ESM.doc (70 kb)
Supplementary material, approximately 72 KB.

References

  1. 1.
    Collinge, J.; Palmer, M. S. Prion Diseases. Curr. Opin. Genet. Dev 1992, 2(3), 448–454.CrossRefGoogle Scholar
  2. 2.
    Prusiner, S. B. Novel Proteinaceous Infectious Particles Cause Scrapie. Science 1982, 21(4542), 136–144.CrossRefGoogle Scholar
  3. 3.
    Prusiner, S. B.. Prions. Proc. Natl. Acad. Sci. U.S.A. 1998, 95(23), 13363–13383.CrossRefGoogle Scholar
  4. 4.
    Stahl, N.; Baldwin, M. A.; Teplow, D. B.; Hood, L.; Gibson, B. W.; Burlingame, A. L.; Prusiner, S. B. Structural Studies of the Scrapie Prion Protein Using Mass Spectrometry and Amino Acid Sequencing. Biochemistry 1993, 32(8), 1991–2002.CrossRefGoogle Scholar
  5. 5.
    Riek, R.; Hornemann, S.; Wider, G.; Glockshuber, R.; Wuthrich, K. NMR Characterization of the Full-Length Recombinant Murine Prion Protein, mPrP(23-231). FEBS Lett 1997, 413(2), 282–288.CrossRefGoogle Scholar
  6. 6.
    Donne, D. G.; Viles, J. H.; Groth, D.; Mehlhorn, I.; James, T. L.; Cohen, F. E.; Prusiner, S. B.; Wright, P. E.; Dyson, H. J. Structure of the Recombinant Full-Length Hamster Prion Protein PrP(29-231): The N-Terminus is Highly Flexible. Proc. Natl. Acad. Sci. U.S.A. 1997, 94(25), 13452–13457.CrossRefGoogle Scholar
  7. 7.
    Zahn, R.; Liu, A.; Luhrs, T.; Riek, R.; von Schroetter, C.; Lopez Garcia, F.; Billeter, M.; Calzolai, L.; Wider, G.; Wuthrich, K. NMR Solution Structure of the Human Prion Protein. Proc. Natl. Acad. Sci. U.S.A. 2000, 97(1), 145–150.CrossRefGoogle Scholar
  8. 8.
    Pan, K. M.; Baldwin, M.; Nguyen, J.; Gasset, M.; Serban, A.; Groth, D.; Mehlhorn, I.; Huang, Z.; Fletterick, R. J.; Cohen, F. E. Conversion of α-Helices into β-Sheets Features in the Formation of the Scrapie Prion Proteins. Proc. Natl. Acad. Sci. U.S.A. 1993, 90(23), 10962–10966.CrossRefGoogle Scholar
  9. 9.
    Dabaghian, R. H.; Mortimer, P. P.; Clewley, J. P. Prospects for the Development of Pre-Mortem Laboratory Diagnostic Tests for Creutzfeldt-Jakob Disease. Rev. Med. Virol 2004, 14(6), 345–361.CrossRefGoogle Scholar
  10. 10.
    Khamsi, R. Prion Disease: The Shape of Things to Come. Nature 2006, 439(7073), 134–135.CrossRefGoogle Scholar
  11. 11.
    Brown, P.; Will, R. G.; Bradley, R.; Asher, D. M.; Detwiler, L. Bovine Spongiform Encephalopathy and Variant Creutzfeldt-Jakob Disease: Background, Evolution, and Current Concerns. Emerg. Infect. Dis. 1001, 7(1), 6–16.Google Scholar
  12. 12.
    Collinge, J. Variant Creutzfeldt-Jakob Disease. Lancet 1999, 354(9175), 317–323.CrossRefGoogle Scholar
  13. 13.
    Llewelyn, C. A.; Hewitt, P. E.; Knight, R. S.; Amar, K.; Cousens, S.; Mackenzie, J.; Will, R. G. Possible Transmission of Variant Creutzfeldt-Jakob Disease by Blood Transfusion. Lancet 2004, 363(9407), 417–421.CrossRefGoogle Scholar
  14. 14.
    Ironside, J. W.; Bishop, M. T.; Connolly, K.; Hegazy, D.; Lowrie, S.; Le Grice, M.; Ritchie, D. L.; McCardle, L. M.; Hilton, D. A. Variant Creutzfeldt-Jakob Disease: Prion Protein Genotype Analysis of Positive Appendix Tissue Samples from a Retrospective Prevalence Study. BMJ 2006, 332(7551), 1186–1188.CrossRefGoogle Scholar
  15. 15.
    Peden, A. H.; Head, M. W.; Diane, L. R.; Jeanne, E. B.; James, W. I. Preclinical vCJD after Blood Transfusion in a PRNP Codon 129 Heterozygous Patient. Lancet 2004, 364(9433), 527–529.CrossRefGoogle Scholar
  16. 16.
    Hilton, D. A.; Ghani, A. C.; Conyers, L.; Edwards, P.; McCardle, L.; Ritchie, D.; Penney, M.; Hegazy, D.; Ironside, J. W. Prevalence of Lymphoreticular Prion Protein Accumulation in UK Tissue Samples. J. Pathol 2004, 203(3), 733–739.CrossRefGoogle Scholar
  17. 17.
    Qin, K.; Yang, Y.; Mastrangelo, P.; Westaway, D. Mapping Cu(II) Binding Sites in Prion Proteins by Diethyl Pyrocarbonate Modification and Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) Mass Spectrometric Footprinting. J. Biol. Chem 2002, 277(3), 1981–1990.CrossRefGoogle Scholar
  18. 18.
    Requena, J. R.; Groth, D.; Legname, G.; Stadtman, E. R.; Prusiner, S. B.; Levine, R. L. Copper-Catalyzed Oxidation of the Recombinant SHa(29-231) Prion Protein. Proc. Natl. Acad. Sci. U.S.A. 2001, 98(13), 7170–7175.CrossRefGoogle Scholar
  19. 19.
    Whittal, R. M.; Ball, H. L.; Cohen, F. E.; Burlingame, A. L.; Prusiner, S. B.; Baldwin, M. A. Copper Binding to Octarepeat Peptides of the Prion Protein Monitored by Mass Spectrometry. Protein Sci 2000, 9, 2, 332–343.CrossRefGoogle Scholar
  20. 20.
    Onisko, B.; Dynin, I.; Requena, J. R.; Silva, C. J.; Erickson, M.; Carter, J. M. Mass Spectrometric Detection of Attomole Amounts of the Prion Protein by nanoLC/MS/MS. J. Am. Soc. Mass Spectrom 2007, 18(6), 1070–1079.CrossRefGoogle Scholar
  21. 21.
    Back, J. W.; Sanz, M. A.; De Jong, L.; De Koning, L. J.; Nijtmans, L. G.; De Koster, C. G.; Grivell, L. A.; Van Der Spek, H.; Muijsers, A. O. A Structure for the Yeast Prohibition Complex: Structure Prediction and Evidence from Chemical Crosslinking and Mass Spectrometry. Protein Sci 2002, 11(10), 2471–2478.CrossRefGoogle Scholar
  22. 22.
    Pushie, M. J.; Ross, A. R.; Vogel, H. J. Mass Spectrometric Determination of the Coordination Geometry of Potential Copper(II) Surrogates for the Mammalian Prion Protein Octarepeat Region. Anal. Chem 2007, 79(15), 5659–5667.CrossRefGoogle Scholar
  23. 23.
    Maras, B.; Barra, D.; Schinina, M. E.; Cardone, F.; Pocchiari, M. Prion (PrPres) Allotypes Profiling: New Perspectives from Mass Spectrometry. Eur. J. Mass Spectrom 2004, 10, 371–382.CrossRefGoogle Scholar
  24. 24.
    Principe, S.; Maras, B.; Schinina, M. E.; Pocchiari, M.; Cardone, F. Unraveling the Details of Prion (con)Formation(s): Recent Advances by Mass Spectrometry. Curr. Opin. Drug Discov. Devel 2008, 11(5), 697–707.Google Scholar
  25. 25.
    Wyttenbach, T.; Kemper, P. R.; Bowers, M. T. Design of a New Electrospray Ion Mobility Mass Spectrometer. Int. J. Mass Spectrom 2001, 212(1/3), 13–23.CrossRefGoogle Scholar
  26. 26.
    Thalassinos, K.; Grabenauer, M.; Slade, S. E.; Hilton, G. R.; Bowers, M. T.; Scrivens, J. H. Characterization of Phosphorylated Peptides Using Traveling Wave-Based and Drift Cell Ion Mobility Mass Spectrometry. Anal. Chem 2009, 81(1), 248–254.CrossRefGoogle Scholar
  27. 27.
    Mehlhorn, I.; Groth, D.; Stockel, J.; Moffat, B.; Reilly, D.; Yansura, D.; Willett, W. S.; Baldwin, M.; Fletterick, R.; Cohen, F. E.; Vandlen, R.; Henner, D.; Prusiner, S. B. High-Level Expression and Characterization of a Purified 142-Residue Polypeptide of the Prion Protein. Biochemistry 1996, 35(17), 5528–5537.CrossRefGoogle Scholar
  28. 28.
    Sanghera, N.; Pinheiro, T. J. T. Binding of Prion Protein to Lipid Membranes and Implications for Irion Conversion. J. Mol. Biol 2002, 315(5), 1241–1256.CrossRefGoogle Scholar
  29. 29.
    Martins, S. M.; Frosoni, D. J.; Martinez, A. M.; De Felice, F. G.; Ferreira, S. T. Formation of Soluble Oligomers and Amyloid Fibrils with Physical Properties of the Scrapie Isoform of the Prion Protein from the C-Terminal Domain of Recombinant Murine Prion Protein mPrP-(121-231). J. Biol. Chem 2006, 281(36), 26121–26128.CrossRefGoogle Scholar
  30. 30.
    Goormaghtigh, E.; Cabiaux, V.; Ruysschaert, J. M. Secondary Structure and Dosage of Soluble and Membrane Proteins by Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy on Hydrated Films. Eur. J. Biochem 1990, 193(2), 409–420.CrossRefGoogle Scholar
  31. 31.
    Gidden, J.; Ferzoco, A.; Baker, E. S.; Bowers, M. T.. J. Am. Chem. Soc 2004, 126, 15132.CrossRefGoogle Scholar
  32. 32.
    Wildgoose, J. L.; Giles, K.; Pringle, S. D.; Koeniger, S. J.; Valentine, R. H.; Bateman, R. H.; Clemmer, D.E. Proceedings of the 54th ASMS Conference on Mass Spectrometry and Allied Topics; Seattle, January, 2005.Google Scholar
  33. 33.
    Scarff, C. A.; Thalassinos, K.; Hilton, G. R.; Scrivens, J. H. Traveling Wave Ion Mobility Mass Spectrometry Studies of Protein Structure: Biological Significance and Comparison with X-ray Crystallography and Nuclear Magnetic Resonance Spectroscopy Measurements. Rapid Commun. Mass Spectrom 2008, 22(20), 3297–3304.CrossRefGoogle Scholar
  34. 34.
    Ruotolo, B. T.; Giles, K.; Campuzano, I.; Sandercock, A. M.; Bateman, R. H.; Robinson, C. V. Evidence for Macromolecular Protein Rings in the Absence of Bulk Water. Science 2005, 310(5754), 1658–1661.CrossRefGoogle Scholar
  35. 35.
    Scrivens, J. H.; Thalassinos, K.; Hilton, G. R.; Slade, S. E.; Pinheiro, T. J. T.; Bateman, R. H.; Bowers, M. T. Proceedings of the 55th ASMS Conference on Mass Spectrometry and Allied Topics; Indianapolis, June, 2006.Google Scholar
  36. 36.
    Ruotolo, B. T.; Benesch, J. L.; Sandercock, A. M.; Hyung, S. J.; Robinson, C. V. Ion Mobility-Mass Spectrometry Analysis of Large Protein Complexes. Nat. Protoc 2008, 3(7), 1139–1152.CrossRefGoogle Scholar
  37. 37.
    Clemmer, D. E. http://www.indiana.edu/~clemmer/.Google Scholar
  38. 38.
    Mesleh, M. F.; Hunter, J. M.; Shvartsburg, A. A.; Schatz, G. C.; Jarrold, M. F. Structural Information from Ion Mobility Measurements: Effects of the Long-Range Potential. J. Phys. Chem 1996, 100(40), 16082–16086.CrossRefGoogle Scholar
  39. 39.
    Caughey, B.; Race, R. E.; Ernst, D.; Buchmeier, M. J.; Chesebro, B. Prion Protein Biosynthesis in Scrapie-Infected and Uninfected Neuroblastoma Cells. J. Virol 1989, 63(1), 175–181.Google Scholar
  40. 40.
    Borchelt, D. R.; Scott, M.; Taraboulos, A.; Stahl, N.; Prusiner, S. B. Scrapie and Cellular Prion Proteins Differ in Their Kinetics of Synthesis and Topology in Cultured Cells. J. Cell. Biol 1990, 110(3), 743–752.CrossRefGoogle Scholar
  41. 41.
    Caughey, B.; Raymond, G. J. The Scrapie-Associated Form of PrP Is Made from a Cell Surface Precursor That Is Both Protease- and Phospholipase-Sensitive. J. Biol. Chem 1991, 266(27), 18217–18223.Google Scholar
  42. 42.
    Yedidia, Y.; Horonchik, L.; Tzaban, S.; Yanai, A.; Taraboulos, A. Proteasomes and Ubiquitin Are Involved in the Turnover of the Wild-Type Prion Protein. EMBO J 2001, 20(19), 5383–5391.CrossRefGoogle Scholar
  43. 43.
    Hosszu, L. L.; Trevitt, C. R.; Jones, S.; Batchelor, M.; Scott, D. J.; Jackson, G. S.; Collinge, J.; Waltho, J. P.; Clarke, A. R. Conformational Properties of {beta}-PrP. J. Biol. Chem 2009, 284(33), 21981–21990.CrossRefGoogle Scholar
  44. 44.
    Li, J.; Browning, S.; Mahal, S. P.; Oelschlegel, A. M.; Weissmann, C. Darwinian Evolution of Prions in Cell Culture. Science 2009, 869–872.Google Scholar
  45. 45.
    Gambetti, P.; Dong, Z.; Yuan, J.; Xiao, X.; Zheng, M.; Alshekhlee, A.; Castellani, R.; Cohen, M.; Barria, M. A.; Gonzalez-Romero, D.; Belay, E. D.; Schonberger, L. B.; Marder, K.; Harris, C.; Burke, J. R.; Montine, T.; Wisniewski, T.; Dickson, D. W.; Soto, C.; Hulette, C. M.; Mastrianni, J. A.; Kong, Q.; Zou, W. Q. A Novel Human Disease with Abnormal Prion Protein Sensitive to Protease. Ann. Neurol 2008, 63(6), 697–708.CrossRefGoogle Scholar
  46. 46.
    Castilla, J.; Saa, P.; Hetz, C.; Soto, C. In Vitro Generation of Infectious Scrapie Prions. Cell 2005, 121(2), 195–206.CrossRefGoogle Scholar
  47. 47.
    Grabenauer, M.; Sanghera, N.; Pinheiro, T. J.; Scrivens, J. H.; Bowers, M. T. Conformational Stability of Syrian Hamster Prion Protein PrP(90-231). 2009, unpublished, (submitted).Google Scholar
  48. 48.
    Badman, E. R.; Myung, S.; Clemmer, D. E. Evidence for Unfolding and Refolding of Gas-Phase Cytochrome c Ions in a Paul Trap. J. Am. Soc. Mass Spectrom 2005, 16(9), 1493–1497.CrossRefGoogle Scholar
  49. 49.
    Wyttenbach, T.; Grabenauer, M.; Thalassinos, K.; Scrivens, J. H.; Bowers, M. T. The Effect of Calcium Ions and Peptide Ligands on the Stability of the Calmodulin Dumbbell Structure. 2009, unpublished, (submitted).Google Scholar
  50. 50.
    Caughey, B. Cellular Metabolism of Normal and Scrapie-Associated Forms of PrP. Semin. Virol 1991, 2, 189–196.Google Scholar
  51. 51.
    Weissmann, C. Molecular Genetics of Transmissible Spongiform Encephalopathies. J. Biol. Chem 1999, 274(1), 3–6.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Gillian R. Hilton
    • 1
  • Konstantinos Thalassinos
    • 1
  • Megan Grabenauer
    • 2
  • Narinder Sanghera
    • 1
  • Susan E. Slade
    • 1
  • Thomas Wyttenbach
    • 2
  • Philip J. Robinson
    • 1
  • Teresa J. T. Pinheiro
    • 1
  • Michael T. Bowers
    • 2
  • James H. Scrivens
    • 1
  1. 1.Department of Biological SciencesUniversity of WarwickCoventryUK
  2. 2.Department of ChemistryUniversity of California-Santa BarbaraSanta BarbaraUSA

Personalised recommendations