Nanotome cluster bombardment to recover spatial chemistry after preparation of biological samples for SIMS imaging

  • Michael E. Kurczy
  • Paul D. Piehowsky
  • David Willingham
  • Kathleen A. Molyneaux
  • Michael L. Heien
  • Nicholas Winograd
  • Andrew G. Ewing
Application Note

Abstract

A C60+ cluster ion projectile is employed for sputter cleaning biological surfaces to reveal spatio-chemical information obscured by contamination overlayers. This protocol is used as a supplemental sample preparation method for time of flight secondary ion mass spectrometry (ToF-SIMS) imaging of frozen and freeze-dried biological materials. Following the removal of nanometers of material from the surface using sputter cleaning, a frozen-patterned cholesterol film and a freeze-dried tissue sample were analyzed using ToF-SIMS imaging. In both experiments, the chemical information was maintained after the sputter dose, due to the minimal chemical damage caused by C60+ bombardment. The damage to the surface produced by freeze-drying the tissue sample was found to have a greater effect on the loss of cholesterol signal than the sputter-induced damage. In addition to maintaining the chemical information, sputtering is not found to alter the spatial distribution of molecules on the surface. This approach removes artifacts that might obscure the surface chemistry of the sample and are common to many biological sample preparation schemes for ToF-SIMS imaging.

References

  1. 1.
    Chandra, S.; Morrison, G. H. Sample Preparation of Animal-Tissues and Cell-Cultures for Secondary Ion Mass-Spectrometry (Sims) Microscopy. Biol. Cell 1992, 74, 31–42.CrossRefGoogle Scholar
  2. 2.
    Altelaar, A. F.; Klinkert, I.; Jalink, K.; de Lange, R. P.; Heeren, R. M. A.; Piersma, S. R. Gold-Enhanced Biomolecular Surface Imaging of Cells and Tissue by SIMS and MALDI Mass Spectrometry. Anal. Chem 2006, 78, 734–742.CrossRefGoogle Scholar
  3. 3.
    Piehowski, P. D.; Kurczy, M. E.; Willingham, D.; Parry, S.; Heien, M. L.; Winograd, N.; Ewing, A. G. Freeze-Etching and Vapor Matrix Deposition for TOF-SIMS Imaging of Single Cells. Langmuir 2008, 24, 7906–7911.CrossRefGoogle Scholar
  4. 4.
    Quong, J. N.; Knize, M. G.; Kulp, K. S.; Wu, K. J. Molecule-Specific Imaging Analysis of Carcinogens in Breast Cancer Cells Using Time-of-Flight Secondary Ion Mass Spectrometry. Appl. Surf. Sci 2004, 231, 424–427.CrossRefGoogle Scholar
  5. 5.
    Parry, S.; Winograd, N. High-resolution TOF-SIMS Imaging of Eukaryotic Cells Preserved in a Trehalose Matrix. Anal. Chem 2005, 77, 7950–7957.CrossRefGoogle Scholar
  6. 6.
    Cannon, D. M.; Pacholski, M. L.; Winograd, N.; Ewing, A. G. Molecule-Specific Imaging of Freeze-Fractured, Frozen-Hydrated Model Membrane Systems Using Mass Spectrometry. J. Am. Chem. Soc 2000, 122, 603–610.CrossRefGoogle Scholar
  7. 7.
    Roddy, T. P.; Cannon, D. M.; Meserole, C. A.; Winograd, N.; Ewing, A. G. Imaging of Freeze-Fractured Cells with In Situ Fluorescence and Time-of-Flight Secondary Ion Mass Spectrometry. Anal. Chem 2002, 74, 4011–4019.CrossRefGoogle Scholar
  8. 8.
    Sjovall, P.; Lausmaa, J.; Nygren, H.; Carlsson, L.; Malmberg, P. Imaging of Membrane Lipids in Single Cells by Imprint-Imaging Time-of-Flight Secondary Ion Mass Spectrometry. Anal. Chem 2003, 75, 3429–3434.CrossRefGoogle Scholar
  9. 9.
    Kurczy, M. E.; Piehowski, P. D.; Parry, S.; Jiang, J.; Chen, G.; Winograd, N. Which is More Important in Bio-Imaging SIMS Experiments: The Sample Preparation or the Nature of the Projectile?. Appl. Surf. Sci 2008, 255, 1298–1304.CrossRefGoogle Scholar
  10. 10.
    Brunelle, A.; Laprevote, O. Recent Advances in Biological Tissue Imaging with Time-of-Flight Secondary Ion Mass Spectrometry: Polyatomic Ion Sources, Sample Preparation, and Applications. Curr. Pharm. Des 2007, 13, 3335–3343.CrossRefGoogle Scholar
  11. 11.
    Sjovall, P.; Lausmaa, J.; Johansson, B. Mass Spectrometric Imaging of Lipids in Brain Tissue. Anal. Chem 2004, 76, 4271–4278.CrossRefGoogle Scholar
  12. 12.
    Fletcher, J. S.; Lockyer, N. P.; Vaidyanathan, S.; Vickerman, J. C. TOF-SIMS 3D Biomolecular Imaging of Xenopus laevis Oocytes Using Buckminsterfullerene (C60) Primary Ions. Anal. Chem 2007, 79, 2199–2206.CrossRefGoogle Scholar
  13. 13.
    Ostrowski, S. G.; Van Bell, C. T.; Winograd, N.; Ewing, A. G. Mass Spectrometric Imaging of Highly Curved Membranes During Tetrahymena mating. Science 2004, 305, 71–73.CrossRefGoogle Scholar
  14. 14.
    Zheng, L. L.; Wucher, A.; Winograd, N. Chemically Alternating Langmuir-Blodgett Thin Films as a Model for Molecular Depth Profiling by Mass Spectrometry. J. Am. Soc. Mass Spectrom 2008, 19, 96–102.CrossRefGoogle Scholar
  15. 15.
    Cheng, J.; Wucher, A.; Winograd, N. Molecular Depth Profiling with Cluster Ion Beams. J. Phys. Chem. B 2006, 110, 8329–8336.CrossRefGoogle Scholar
  16. 16.
    Cheng, J.; Winograd, N. Depth Profiling of Peptide Films with TOF-SIMS and a C-60 probe. Anal. Chem 2005, 77, 3651–3659.CrossRefGoogle Scholar
  17. 17.
    Wagner, M. S. Molecular Depth Profiling of Multilayer Polymer Films Using Time-of-Flight Secondary Ion Mass Spectrometry. Anal. Chem 2005, 77, 911–922.CrossRefGoogle Scholar
  18. 18.
    Kozole, J.; Szakal, C.; Kurczy, M.; Winograd, N. Model Multilayer Structures for Three-Dimensional Cell Imaging. Appl. Surf. Sci 2006, 252, 6789–6792.CrossRefGoogle Scholar
  19. 19.
    Conlan, X. A.; Lockyer, N. P.; Vickerman, J. C. Is Proton Cationization Promoted by Polyatomic Primary Ion Bombardment During Time-of-Flight Secondary Ion Mass Spectrometry Analysis of Frozen Aqueous Solutions?. Rapid Commun. Mass Spectrom 2006, 20, 1327–1334.CrossRefGoogle Scholar
  20. 20.
    Kurczy, M. E.; Kozole, J.; Parry, S. A.; Winograd, N.; Ewing, A. G. Relative Quantification of Cellular Sections with Molecular Depth Profiling ToF-SIMS Imaging. Appl. Surf. Sci 2008, 255, 1068–1070.CrossRefGoogle Scholar
  21. 21.
    Jones, E. A.; Lockyer, N. P.; Vickerman, J. C. Mass Spectral Analysis and Imaging of Tissue by TOF-SIMS—The Role of Buckminsterfullerene, C-60(+), Primary Ions. Int. J. Mass Spectrom 2007, 260, 146–157.CrossRefGoogle Scholar
  22. 22.
    Jones, E. A.; Lockyer, N. P.; Vickerman, J. C. Depth Profiling Brain Tissue Sections with a 40 keV C-60(+) Primary Ion Beam. Anal. Chem 2008, 80, 2125–2132.CrossRefGoogle Scholar
  23. 23.
    Farnsworth, H. E.; Schlier, R. E.; George, T. H.; Burger, R. M. Application of the Ion Bombardment Cleaning Method to Titanium, Germanium, Silicon, and Nickel as Determined by Low-Energy Electron Diffraction. J. Appl. Phys 1958, 29, 1150–1161.CrossRefGoogle Scholar
  24. 24.
    Roddy, T. P.; Cannon, D. M.; Ostrowski, S. G.; Winograd, N.; Ewing, A. G. Identification of Cellular Sections with Imaging Mass Spectrometry Following Freeze Fracture. Anal. Chem 2002, 74, 4020–4026.CrossRefGoogle Scholar
  25. 25.
    Ding, J. X.; Jiang, D.; Kurczy, M.; Nalepka, J.; Dudley, B.; Merkel, E. I.; Porter, F. D.; Ewing, A. G.; Winograd, N.; Burgess, J.; Molyneaux, K. Inhibition of HMG CoA Reductase Reveals an Unexpected Role for Cholesterol During PGC Migration in the Mouse. BMC Dev. Biol 2008, 8, 14.CrossRefGoogle Scholar
  26. 26.
    Kozole, J.; Wucher, A.; Winograd, M. Energy Deposition During Molecular Depth Profiling Experiments with Cluster Ion Beams. Anal. Chem 2008, 80, 5293–5301.CrossRefGoogle Scholar
  27. 27.
    Sjovall, P.; Johansson, B.; Lausmaa, J. Localization of Lipids in Freeze-Dried Mouse Brain Sections by Imaging TOF-SIMS. Appl. Surf. Sci 2006, 252, 6966–6974.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Michael E. Kurczy
    • 1
  • Paul D. Piehowsky
    • 1
  • David Willingham
    • 1
  • Kathleen A. Molyneaux
    • 2
  • Michael L. Heien
    • 1
  • Nicholas Winograd
    • 1
  • Andrew G. Ewing
    • 1
    • 3
  1. 1.Department of ChemistryPennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Genetics School of MedicineCase Western Reserve UniversityClevelandUSA
  3. 3.Department of ChemistryUniversity of GothenburgGöteborgSweden

Personalised recommendations