Covalent attachment and dissociative loss of sinapinic acid to/from cysteine-containing proteins from bacterial cell lysates analyzed by MALDI-TOF-TOF mass spectrometry

  • Clifton K. Fagerquist
  • Brandon R. Garbus
  • Katherine E. Williams
  • Anna H. Bates
  • Leslie A. Harden
Articles

Abstract

We report covalent attachment via a thiol ester linkage of 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid or SA) to cysteine-containing protein biomarkers from bacterial cell lysates of E. coli analyzed by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry when using SA as the matrix. Evidence to support this conclusion is the appearance of additional peaks in the MS spectra when using SA, which are absent when using α-cyano-4-hydroxycinnamic acid (HCCA). The additional peaks appear at a mass-to-charge (m/z) ∼208 greater to the m/z of a more abundant protein ion peak. Protein biomarkers were identified by tandem mass spectrometry (MS/MS) using a MALDI time-of-flight/time-of-flight (TOF-TOF) mass spectrometer and top-down proteomics. Three protein biomarkers, HdeA, HdeB, and homeobox or YbgS (each containing two cysteine residues) were identified as having reactivity to SA. Non-cysteine-containing protein biomarkers showed no evidence of reactivity to SA. MS ions and MS/MS fragment ions were consistent with covalent attachment of SA via a thiol ester linkage to the side-chain of cysteine residues. MS/MS of a protein biomarker ion with a covalently attached SA revealed fragment ion peaks suggesting dissociative loss SA. We propose dissociative loss of SA is facilitated by a pentacyclic transition-state followed by proton abstraction of the β-hydrogen of the bound SA by a sulfur lone pair followed by dissociative loss of 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-ynal. The apparent reactivity of SA to cysteine/disulfide-containing proteins may complicate identification of such proteins, however the apparent differential reactivity of SA and HCCA toward cysteine/disulfide-containing proteins may be exploited for identification of unknown cysteine-containing proteins.

References

  1. 1.
    Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp, F. Matrix-Assisted Ultraviolet Laser Desorption of Nonvolatile Compounds. Int. J. Mass Spectrom. Ion Processes 1987, 78, 53–68.CrossRefGoogle Scholar
  2. 2.
    Tanaka, K.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Detection of High Mass Molecules by Laser Desorption Time-of-Flight Mass Spectrometry. Proceedings of the 2nd Japan-China Joint Symposium on Mass Spectrometry; Osaka, Japan, September, 1987; Abstract p. 185–188.Google Scholar
  3. 3.
    Wu, K. J.; Odom, R. W. Characterizing Synthetic Polymers by MALDI MS. Anal. Chem 1998, 70, 456A-461A.CrossRefGoogle Scholar
  4. 4.
    Zucht, H. D.; Lamerz, J.; Khamenia, V.; Schiller, C.; Appel, A.; Tammen, H.; Crameri, R.; Selle, H. Datamining Methodology for LC-MALDI-MS Based Peptide Profiling. Comb. Chem. High Throughput Screen 2005, 8, 717–723.CrossRefGoogle Scholar
  5. 5.
    Hardouin, J. Protein Sequence Information by Matrix-Assisted Laser Desorption/Ionization In-Source Decay Mass Spectrometry. Mass Spectrom. Rev 2007, 26, 672–682.CrossRefGoogle Scholar
  6. 6.
    Fenselau, C.; Demirev, P. A. Characterization of Intact Microorganisms by MALDI Mass Spectrometry. Mass Spectrom. Rev 2001, 20, 157–171.CrossRefGoogle Scholar
  7. 7.
    Lay, J. O. Jr. MALDI-TOF Mass Spectrometry of Bacteria. Mass Spectrom. Rev 2001, 20, 172–194.CrossRefGoogle Scholar
  8. 8.
    Chaurand, P.; Norris, J. L.; Cornett, D. S.; Mobley, J. A.; Caprioli, R. M. New Developments in Profiling and Imaging of Proteins from Tissue Sections by MALDI Mass Spectrometry. J. Proteome Res 2006, 5, 2889–2900.CrossRefGoogle Scholar
  9. 9.
    Meng, Z.; Simmons-Willis, T. A.; Limbach, P. A. The Use of Mass Spectrometry in Genomics. Biomol. Eng 2004, 21, 1–13.CrossRefGoogle Scholar
  10. 10.
    König, S.; Kollas, O.; Dreisewerd, K. Generation of Highly Charged Peptide and Protein Ions by Atmospheric Pressure Matrix-Assisted Infrared Laser Desorption/Ionization Ion Trap Mass Spectrometry. Anal. Chem 2007, 79, 5484–5488.CrossRefGoogle Scholar
  11. 11.
    Li, B.; An, H. J.; Hedrick, J. L.; Lebrilla, C. B. Collision-Induced Dissociation Tandem Mass Spectrometry for Structural Elucidation of Glycans. Methods Mol. Biol 2009, 534, 133–145.Google Scholar
  12. 12.
    Ens, W.; Standing, K. G. Hybrid Quadrupole/Time-of-Flight Mass Spectrometers for Analysis of Biomolecules. Methods Enzymol 2005, 402, 49–78.CrossRefGoogle Scholar
  13. 13.
    Chernushevich, I. V.; Loboda, A. V.; Thomson, B. A. An Introduction to Quadrupole-Time-of-Flight Mass Spectrometry. J. Mass Spectrom 2001, 36, 849–865.CrossRefGoogle Scholar
  14. 14.
    Yoo, C.; Patwa, T. H.; Kreunin, P.; Miller, F. R.; Huber, C. G.; Nesvizhskii, A. I.; Lubman, D. M. Comprehensive Analysis of Proteins of pH Fractionated Samples Using Monolithic LC/MS/MS, Intact MW Measurement, and MALDI-QIT-TOF MS. J. Mass Spectrom 2007, 42, 312–334.CrossRefGoogle Scholar
  15. 15.
    Albrethsen, J. Reproducibility in Protein Profiling by MALDI-TOF Mass Spectrometry. Clin. Chem 2007, 53, 852–858.CrossRefGoogle Scholar
  16. 16.
    Medzihradszky, K. F.; Campbell, J. M.; Baldwin, M. A.; Falick, A. M.; Juhasz, P.; Vestal, M. L.; Burlingame, A. L. The Characteristics of Peptide Collision-Induced Dissociation Using a High-Performance MALDI-TOF/TOF Tandem Mass Spectrometer. Anal. Chem 2000, 72, 552–558.CrossRefGoogle Scholar
  17. 17.
    Suckau, D.; Resemann, A.; Schuerenberg, M.; Hufnagel, P.; Franzen, J.; Holle, A. A Novel MALDI LIFT-TOF/TOF Mass Spectrometer for Proteomics. Anal. Bioanal. Chem 2003, 376, 952–965.CrossRefGoogle Scholar
  18. 18.
    Demirev, P. A.; Fenselau, C. Mass Spectrometry in Biodefense. J. Mass Spectrom 2008, 43(11), 1441–1457.CrossRefGoogle Scholar
  19. 19.
    Claydon, M. A.; Davey, S. N.; Edwards-Jones, V.; Gordon, D. B. The Rapid Identification of Intact Microorganisms Using Mass Spectrometry. Nat. Biotechnol 1996, 14(11), 1584–1586.CrossRefGoogle Scholar
  20. 20.
    Cain, T. C.; Lubman, D. M.; Weber, W. J., Jr. Differentiation of Bacteria Using Protein Profiles from Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom 1994, 8, 1026–1030.CrossRefGoogle Scholar
  21. 21.
    Krishnamurthy, T.; Ross, P. L.; Rajamani, U. Detection of Pathogenic and Nonpathogenic Bacteria by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom 1996, 10, 883–888.CrossRefGoogle Scholar
  22. 22.
    Krishnamurthy, T.; Ross, P. L. Rapid Identification of Bacteria by Direct Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Analysis of Whole Cells. Rapid Commun. Mass Spectrom 1996, 10, 1992–1996.CrossRefGoogle Scholar
  23. 23.
    Holland, R. D.; Wilkes, J. G.; Rafii, F.; Sutherland, J. B.; Persons, C. C.; Voorhees, K. J.; Lay, J. O., Jr. Rapid Identification of Intact Whole Bacteria Based on Spectral Patterns Using Matrix-Assisted Laser Desorption/Ionization with Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom 1996, 10, 1227–1232.CrossRefGoogle Scholar
  24. 24.
    Holland, R. D.; Duffy, C. R.; Rafii, F.; Sutherland, J. B.; Heinze, T. M.; Holder, C. L.; Voorhees, K. J.; Lay, J. O. Jr. Identification of Bacterial Proteins Observed in MALDI TOF Mass Spectra from Whole Cells. Anal Chem 1999, 71, 3226–3230.CrossRefGoogle Scholar
  25. 25.
    Arnold, R.; Reilly, J. Fingerprint Matching of E. coli Strains with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry of Whole Cells Using a Modified Correlation Approach. Rapid Commun. Mass Spectrom 1998, 12, 630–636.CrossRefGoogle Scholar
  26. 26.
    Welham, K.; Domin, M.; Scannell, D.; Cohen, E.; Ashton, D. The Characterization of Microorganisms by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom 1998, 12, 176–180.CrossRefGoogle Scholar
  27. 27.
    Haag, A.; Taylor, S.; Johnston, K.; Cole, R. Rapid Identification and Speciation of Haemophilus Bacteria by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. J. Mass Spectrom 1998, 33, 750–756.CrossRefGoogle Scholar
  28. 28.
    Wang, Z.; Russon, L.; Li, L.; Roser, D.; Long, S. R. Investigation of Spectral Reproducibility in Direct Analysis of Bacteria Proteins by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom 1998, 12, 456–464.CrossRefGoogle Scholar
  29. 29.
    Dai, Y.; Li, L.; Roser, D.; Long, S. R. Detection and Identification of Low-Mass Peptides and Proteins from Solvent Suspensions of Escherichia coli by High Performance Liquid Chromatography Fractionation and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom 1999, 13, 73–78.CrossRefGoogle Scholar
  30. 30.
    Ramirez, J.; Fenselau, C. Factors Contributing to Peak Broadening and Mass Accuracy in the Characterization of Intact Spores Using Matrix-Assisted Laser Desorption/Ionization Coupled with Time-of-Flight Mass Spectrometry. J. Mass Spectrom 2001, 36, 929–936.CrossRefGoogle Scholar
  31. 31.
    Whiteaker, J.; Karns, J.; Fenselau, C.; Perdue, M. L. Analysis of Bacillus anthracis Spores in Milk Using Mass Spectrometry. Anal. Chem 2004, 1, 185–194.Google Scholar
  32. 32.
    Mandrell, R. E.; Harden, L. A.; Bates, A. H.; Miller, W. G.; Haddon, W. F.; Fagerquist, C. K. Speciation of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Applied Environ. Microbiol 2005, 71, 6292–6307.CrossRefGoogle Scholar
  33. 33.
    Fagerquist, C. K.; Miller, W. G.; Harden, L. A.; Bates, A. H.; Vensel, W. H.; Wang, G.; Mandrell, R. E. Genomic and Proteomic Identification of a DNA-Binding Protein Used in the “Fingerprinting” of Campylobacter Species and Strains by MALDI-TOF-MS Protein Biomarker Analysis. Anal. Chem 2005, 77, 4897–4907.CrossRefGoogle Scholar
  34. 34.
    Fagerquist, C. K.; Bates, A. H.; Heath, S.; King, B. C.; Garbus, B. R.; Harden, L. A.; Miller, W. G. Subspeciating Campylobacter jejuni by Proteomic Analysis of Its Protein Biomarkers and Their Post-Translational Modifications. J. Proteome Res 2006, 5, 2527–2538.CrossRefGoogle Scholar
  35. 35.
    Jarmon, K. H.; Cebula, S. T.; Sinapinic Acidenz, A. J.; Petersen, C. E.; Valentine, N. B.; Kingsley, M. T.; Wahl, K. L. An Algorithm for Automated Bacterial Identification Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem 2000, 72, 1217–1223.CrossRefGoogle Scholar
  36. 36.
    Wahl, K. L.; Wunschel, S. C.; Jarman, K. H.; Valentine, N. B.; Petersen, C. E.; Kingsley, M. T.; Zartolas, K. A.; Saenz, A. J. Analysis of Microbial Mixtures by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Anal. Chem 2002, 74, 6191–6199.CrossRefGoogle Scholar
  37. 37.
    Wunschel, S. C.; Jarman, K. H.; Petersen, C. E.; Valentine, N. B.; Wahl, K. L.; Schauki, D.; Jackman, J.; Nelson, C. P.; White, E., 5th. Bacterial Analysis by MALDI-TOF Mass Spectrometry: An Inter-Laboratory Comparison. J. Am. Soc. Mass Spectrom 2005, 16, 456–462.CrossRefGoogle Scholar
  38. 38.
    Demirev, P. A.; Ho, Y.-P.; Ryzhov, V.; Fenselau, C. Microorganism Identification by Mass Spectrometry and Protein Database Searches. Anal. Chem 1999, 71, 2732–2738.CrossRefGoogle Scholar
  39. 39.
    Peneda, F. J.; Lin, J. S.; Fenselau, C.; Demirev, P. A. Testing the Significance of Microorganism Identification by Mass Spectrometry and Proteome Database Search. Anal. Chem 2000, 72, 3739–3744.CrossRefGoogle Scholar
  40. 40.
    Demirev, P. A.; Lin, J. S.; Peneda, F. J.; Fenselau, C. Bioinformatics and Mass Spectrometry for Microorganism Identification: Proteome-Wide Post-Translational Modifications and Database Search Algorithms for Characterization of Intact. H. pylori. Anal. Chem 2001, 73, 4566–4573.CrossRefGoogle Scholar
  41. 41.
    Yao, Z.-P.; Demirev, P. A.; Fenselau, C. Mass Spectrometry-Based Proteolytic Mapping for Rapid Virus Identification. Anal. Chem 2002, 74, 2529–2534.CrossRefGoogle Scholar
  42. 42.
    Peneda, F. J.; Antoine, M. D.; Demirev, P. A.; Feldman, A. B.; Jackman, J.; Longenecker, M.; Lin, J. S. Microorganism Identification by Matrix-Assisted Laser/Desorption Ionization Mass Spectrometry and Model-Derived Ribosomal Protein Biomarkers. Anal. Chem 2003, 75, 3817–3822.CrossRefGoogle Scholar
  43. 43.
    Demirev, P. A.; Ramirez, J.; Fenselau, C. Tandem Mass Spectrometry of Intact Proteins for Characterization of Biomarkers from Bacillus cereus T spores. Anal. Chem 2001, 73, 5725–5731.CrossRefGoogle Scholar
  44. 44.
    Lin, M.; Campbell, J. M.; Mueller, D. R.; Wirth, U. Intact Protein Analysis by Matrix-Assisted Laser Desorption/Ionization Tandem Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom 2003, 17, 1809–1814.CrossRefGoogle Scholar
  45. 45.
    Demirev, P. A.; Feldman, A. B.; Kowalski, P.; Lin, J. S. Top-Down Proteomics for Rapid Identification of Intact Microorganisms. Anal. Chem 2005, 77, 7455–7461.CrossRefGoogle Scholar
  46. 46.
    Fagerquist, C. K.; Garbus, B. R.; Williams, K. E.; Bates, A. H.; Boyle, S.; Harden, L. A. Web-Based Software for Rapid “Top-Down” Proteomic Identification of Protein Biomarkers with Implications for Bacterial Identification. Appl. Environ. Microbiol 2009, 75, 4341–4353.CrossRefGoogle Scholar
  47. 47.
    Fagerquist, C. K.; Garbus, B. R.; Williams, K. E.; Bates, A. H.; Boyle, S.; Harden, L. A.; Miller, W. G.; Mandrell, R. E. Rapid Identification of E. coli O157:H7 by “Top-Down” Proteomics Using MALDI-TOF/TOF Mass Spectrometry. Oral Presentation Given on June 2nd 2009 at the 57th American Society of Mass Spectrometry Conference (Philadelphia, PA). Extended abstract published September 2009 in the Proceedings of the 57th ASMS Conference (on-DVD: A091307.8125VER.1.pdf).Google Scholar
  48. 48.
    Perna, N. T.; Plunkett, G., III; Burland, V.; Mau, B.; Glasner, J. D.; Rose, D. J.; Mayhew, G. F.; Evans, P. S.; Gregor, J.; Kirkpatrick, H. A.; Pósfai, G.; Hackett, J.; Klink, S.; Boutin, A.; Shao, Y.; Miller, L.; Grotbeck, E. J.; Davis, N. W.; Lim, A.; Dimalanta, E. T.; Potamousis, K. D.; Apodaca, J.; Anantharaman, T. S.; Lin, J.; Yen, G.; Schwartz, D. C.; Welch, R. A.; Blattner, F. R. Genome Sequence of Enterohemorrhagic Escherichia coli O157:H7. Nature 2001, 409(6819), 529–533.CrossRefGoogle Scholar
  49. 49.
    Fagerquist, C. K.; Garbus, B. R.; Miller, W. G.; Williams, K. E.; Bates, A. H.; Yee, E.; Boyle, S.; Harden, L. A.; Cooley, M. B.; Mandrell, R. E. Rapid Identification of Protein Biomarkers of E. coli O157:H7 by MALDI-TOF-TOF Mass Spectrometry and Top-Down Proteomics, unpublished (submitted).Google Scholar
  50. 50.
    van der Horst, M. A.; Arents, J. C.; Kort, R.; Hellingwerf, K. J. Binding, Tuning, and Mechanical Function of the 4-Hydroxy-Cinnamic Acid Chromophore in Photoactive Yellow Protein. Photochem. Photobiol. Sci 2007, 6, 571–579.CrossRefGoogle Scholar
  51. 51.
    Hoff, W. D.; Devreese, B.; Fokkens, R.; Nugteren-Roodzant, I. M.; Van Beeumen, J.; Nibbering, N.; Hellingwerf, K. J. Chemical Reactivity and Spectroscopy of the Thiol Ester-Linked p-Coumaric Acid Chromophore in the Photoactive Yellow Protein from Ectothiorhodospira halophila. Biochemistry 1996, 35, 1274–1281.CrossRefGoogle Scholar
  52. 52.
    Baca, M.; Borgstahl, G. E.; Boissinot, M.; Burke, P. M.; Williams, D. R.; Slater, K. A.; Getzoff, E. D. Complete Chemical Structure of Photoactive Yellow Protein: Novel Thioester-Linked 4-Hydroxycinnamyl Chromophore and Photocycle Chemistry. Biochemistry 1994, 33, 14369–14377.CrossRefGoogle Scholar
  53. 53.
    Hoff, W. D.; Düx, P.; Hård, K.; Devreese, B.; Nugteren-Roodzant, I. M.; Crielaard, W.; Boelens, R.; Kaptein, R.; van Beeumen, J.; Hellingwerf, K. J. Thiol Ester-Linked p-Coumaric Acid as a New Photoactive Prosthetic Group in a Protein with Rhodopsin-Like Photochemistry. Biochemistry 1994, 33, 13959–13962.CrossRefGoogle Scholar
  54. 54.
    Van Beeumen, J. J.; Devreese, B. V.; Van Bun, S. M.; Hoff, W. D.; Hellingwerf, K. J.; Meyer, T. E.; McRee, D. E.; Cusanovich, M. A. Primary Structure of a Photoactive Yellow Protein from the Phototrophic Bacterium Ectothiorhodospira halophila, with Evidence for the Mass and the Binding Site of the Chromophore. Protein Sci 1993, 2, 1114–1125.CrossRefGoogle Scholar
  55. 55.
    Taylor, J. A.; Johnson, R. S. Implementation and Uses of Automated De Novo Peptide Sequencing by Tandem Mass Spectrometry. Anal. Chem 2001, 73, 2594–2604.CrossRefGoogle Scholar
  56. 56.
    Fagerquist, C. K.; Williams, K. E.; Bates, A. H. Identification of Foodborne Bacteria by High Energy Collision-Induced Dissociation of Their Protein Biomarkers by MALDI Tandem-Time-of-Flight Mass Spectrometry. Proceedings of the 55th ASMS Conference on Mass Spectrometry and Allied Topics; Indianapolis, IN, June, 2007.Google Scholar
  57. 57.
    Fagerquist, C. K. Identification of Foodborne Bacteria by MALDI-TOF-TOF Analysis of Protein Biomarkers. Proceedings of the 121st AOAC Annual Meeting; Anaheim, CA, 2007.Google Scholar
  58. 58.
    Mandrell, R. E.; Harden, L. A.; Horn, S. T.; Haddon, W. F.; Miller, W. G. Analysis of E. coli Environmental and Diarrheal Isolates by MALDI-TOF Mass Spectrometry: Identification of Potential Biomarker Ions and a Mutation in a Gene Encoding a Biomarker Ion. Proceedings of the American Society of Microbiology; Los Angeles, CA, May, 2000; Poster C-177.Google Scholar
  59. 59.
    Mazzeo, M. F.; Sorrentino, A.; Gaita, M.; Cacace, G.; Di Stasio, M.; Facchiano, A.; Comi, G.; Malorni, A.; Siciliano, R. A. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for the Discrimination of Food-Borne Microorganisms. Appl. Environ. Microbiol 2006, 72(2), 1180–1189.CrossRefGoogle Scholar
  60. 60.
    Yang, H.; Liu, N.; Qiu, X.; Liu, S. A New Method for Analysis of Disulfide-Containing Proteins by Matrix-Assisted Laser Desorption Ionization (MALDI) Mass Spectrometry. J Am. Soc. Mass Spectrom 2009, 20, 2284–2293.CrossRefGoogle Scholar
  61. 61.
    Happersberger, H. P.; Bantscheff, M.; Barbirz, S.; Glocker, M. O. Multiple and Subsequent MALDI-MS On-Target Chemical Reactions for the Characterization of Disulfide Bonds and Primary Structures of Proteins. Methods Mol. Biol 2000, 146, 167–184.Google Scholar
  62. 62.
    Spiess, C.; Happersberger, H. P.; Glocker, M. O.; Spiess, E.; Rippe, K.; Ehrmann, M. Biochemical Characterization and Mass Spectrometric Disulfide Bond Mapping of Periplasmic α-Amylase MalS of Escherichia coli. J. Biol Chem 1997, 272, 22125–22133.CrossRefGoogle Scholar
  63. 63.
    Allwood, D. A.; Dreyfus, R. W.; Perera, I. K.; Dyer, P. E. UV Optical Absorption of Matrices Used for Matrix-Assisted Laser Desorption/Ionization. Rapid Commun. Mass Spectrom 1996, 10, 1575–1578.CrossRefGoogle Scholar
  64. 64.
    Low, W.; Kang, J.; DiGruccio, M.; Kirby, D.; Perrin, M.; Fischer, W. H. MALDI-MS Analysis of Peptides Modified with Photolabile Aryl-Azido Groups. J. Am. Soc. Mass Spectrom 2004, 15, 1156–1160.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Clifton K. Fagerquist
    • 1
  • Brandon R. Garbus
    • 1
  • Katherine E. Williams
    • 2
  • Anna H. Bates
    • 1
  • Leslie A. Harden
    • 1
  1. 1.U.S. Department of AgricultureWestern Regional Research Center, Agricultural Research ServiceAlbanyUSA
  2. 2.Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of California, San Francisco, School of MedicineSan FranciscoUSA

Personalised recommendations