Role of methyl radicals in the growth of PAHs

  • Bikau Shukla
  • Akira Miyoshi
  • Mitsuo Koshi


The role of methyl radicals in the networking of sp2 carbons has been explored through kinetic analysis of mass spectra of the gas-phase products of the pyrolysis of toluene and toluene/acetone mixtures. Pyrolytic reactions were performed in a flow tube reactor at temperatures of 1140–1320 K and a constant total pressure of 10.38 Torr with a residence time of 0.585 s. On addition of acetone, methyl substituted products and their derivatives were enhanced. Mass peaks were observed in several sequences at an interval of 14 mass units; these ions correspond to methyl substituted products formed as a result of hydrogen abstraction (−H) followed by methyl radical addition (+CH3). Each major peak was usually preceded by a peak at two mass units lower, which was likely produced through dehydrogenation/dehydrocyclization (−H2) of methyl substituted products. Detected species include a large number of alkyl, cyclotetrafused (CT), cyclopentafused (CP) mono-, di-, and polycyclic aromatic hydrocarbons (PAHs) along with primary PAHs. The analysis showed that MAC (methyl addition/cyclization) has a unique capacity to induce the sequential growth of hexagonal networks of sp2 carbons from all fusing sites [1] of a PAH. Moreover, MAC was found capable of answering an important question in PAH growth, which is expansion of the CT → CP → hexagonal network for which other reported mechanisms are inefficient.


Phenanthrene Ethylbenzene Mass Peak Soot Formation Propylbenzene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Shukla, B.; Susa, A.; Miyoshi, A.; Koshi, M. In Situ Direct Sampling Mass Spectrometric Study on Formation of Polycyclic Aromatic Hydrocarbons in Toluene Pyrolysis. J. Phys. Chem. A. 2007, 111(34), 8308–8324.CrossRefGoogle Scholar
  2. 2.
    Wang, H.; Frenklach, M. A Detailed Kinetic Modeling Study of Aromatics Formation in Laminar Premixed Acetylene and Ethylene Flames. Combust. Flame. 1997, 110, 173–221.CrossRefGoogle Scholar
  3. 3.
    Frenklach, M.; Clary, D. W.; Gardiner, W. C.; Stein, S. E. Detailed Kinetic Modeling of Soot Formation in Shock-Tube Pyrolysis of Acetylene. Proc. Combust. Inst. 1985, 20, 887–901.CrossRefGoogle Scholar
  4. 4.
    Frenklach, M.; Wang, H. Detailed Modeling of Soot Particle Nucleation and Growth. Proc. Combust. Inst. 1991, 23, 1559–1566.CrossRefGoogle Scholar
  5. 5.
    Bockhorn, H.; Fetting, F.; Wenz, H. W. Investigation of the Formation of High Molecular Hydrocarbons and Soot in Premixed Hydrocarbon-Oxygen Flames. Ber. Bunsen-Ges. Phys. Chem. 1983, 87, 1067.CrossRefGoogle Scholar
  6. 6.
    Böhm, H.; Jander, H.; Tanke, D. PAH Growth and Soot Formation in the Pyrolysis of Acetylene and Benzene at High Temperatures and Pressures: Modeling and Experiment. Proc. Combust. Inst. 1998, 27, 1605–1612.CrossRefGoogle Scholar
  7. 7.
    McKinnon, J. T.; Howard, J. B. The Roles of PAH and Acetylene in Soot Nucleation and Growth. Proc. Combust. Inst. 1992, 24, 965–971.CrossRefGoogle Scholar
  8. 8.
    Badger, G. M. Pyrolysis of Hydrocarbons. Prog. Phys. Org. Chem. 1965, 3(1), 1–40.Google Scholar
  9. 9.
    Badger, G. M.; Donnelly, J. K.; Spotswood, T. M. The Formation of Aromatic Hydrocarbons at High Temperatures: XXIII. The Pyrolysis of Anthracene. Aust. J. Chem. 1964, 17, 1147–1156.CrossRefGoogle Scholar
  10. 10.
    Sarofim, A. F.; Longwell, J. P.; Wornat, M. J.; Mukherjee, J. In Soot Formation in Combustion-Mechanisms and Models, Bockhorn, H.; Ed.; Springer Series in Chemical Physics 59, Springer-Verlag: Heidelberg, Germany, 1994; pp 485–500.CrossRefGoogle Scholar
  11. 11.
    Griesheimer, J.; Homann, K.-H. Large Molecules, Radicals, Ions, and Small Soot Particles in Fuel-Rich Hydrocarbon Flames: Part I. Aromatic Radicals and Intermediate PAHs in a Premixed Low-Pressure Naphthalene/Oxygen/Argon Flame. Proc. Combust. Inst. 1998, 27, 1753–1761.CrossRefGoogle Scholar
  12. 12.
    Dong, G. L.; Huttinger, K. J. Consideration of Reaction Mechanisms Leading to Pyrolytic Carbon of Different Texture. Carbon. 2002, 40, 2515–2528.CrossRefGoogle Scholar
  13. 13.
    Unterreiner, V. B.; Sierka, M.; Ahlrichs, R. Reaction Pathways for Growth of Polycyclic Aromatic Hydrocarbons Under Combustion Conditions, a DFT Study. Phys. Chem., Chem. Phys. 2004, 6, 4377–4384.CrossRefGoogle Scholar
  14. 14.(a)
    Shukla, B.; Susa, A.; Miyoshi, A.; Koshi, M. Role of Phenyl Radicals in the Growth of Polycyclic Aromatic Hydrocarbons. J. Phys. Chem. A. 2008, 112(11), 2362–2369;CrossRefGoogle Scholar
  15. 14.(b)
    Shukla, B.; Koshi, M. A Highly Efficient Growth Mechanism of Polycyclic Aromatic Hydrocarbons. Phys. Chem., Chem. Phys. 2010, DOI:10.1039/B919644G.Google Scholar
  16. 15.
    Wellmann, R.; Böttcher, A.; Kappes, M.; Kohl, U.; Niehus, H. Growth of Graphene Layers on HOPG Via Exposure to Methyl Radicals. Surf. Sci. 2003, 542, 81–93.CrossRefGoogle Scholar
  17. 16.
    Cher, M. The Reaction of Methyl Radicals with Toluene. J. Phys. Chem. 1964, 68, 1316–1321.CrossRefGoogle Scholar
  18. 17.
    Levy, M.; Szwarc, M. The Kinetics of Decomposition of Acetyl Peroxide: III. The Reactions of Radicals Produced in the Decomposition. J. Am. Chem. Soc. 1954, 76, 5981–5985.CrossRefGoogle Scholar
  19. 18.
    Meyer, R. A.; Burr, J. G. The Hydrogen Carrier Technique for The Pyrolysis of Toluene and Deuterated Toluenes. J. Am. Chem. Soc. 1963, 85, 478–479.CrossRefGoogle Scholar
  20. 19.
    Trotman-Dickenson, A. F.; Steacie, E. W. R. The Reactions of Methyl Radicals: IV. The Abstraction of Hydrogen Atoms from Cyclic Hydrocarbons, Butynes, Amines, Alcohols, Ethers, and Ammonia. J. Chem. Phys. 1951, 19, 329–336.CrossRefGoogle Scholar
  21. 20.
    Burkley, I. B.; Robbert, R. E. The Reactions of Methyl Radicals with Aromatic Compounds, Toluene, Ethylbenzene, and Cumene. J. Phys. Chem. 1963, 67, 168–169.CrossRefGoogle Scholar
  22. 21.
    Cher, M.; Hollingsworth, C. S.; Sicilio, F. The Vapor Phase Reaction of Methyl Radicals with Toluene at 100-300°. J. Phys. Chem. 1966, 70(3), 877–883.CrossRefGoogle Scholar
  23. 22.
    Unterreiner, V. B.; Carissan, Y.; Klopper, W. Density Functional Study of Methyl Chemisorption on Polycyclic Aromatic Hydrocarbons. Chem. Phys. Chem. 2006, 7, 1311–1321.Google Scholar
  24. 23.
    Grujicic, M.; Cao, G.; Gersten, B. Optimization of the Chemical Vapor Deposition Process for Carbon Nanotubes Fabrication. Appl. Surf. Sci. 2002, 191, 223–239.CrossRefGoogle Scholar
  25. 24.
    Kong, J.; Cassel, A. M.; Dai, H. Chemical Vapor Deposition of Methane for Single-Walled Carbon Nanotubes. Chem. Phys. Lett. 1998, 292, 567–574.CrossRefGoogle Scholar
  26. 25.
    Colomer, J. F.; Stephan, C.; Lefrant, S.; Van Tendeloo, G.; Willems, I.; Kónya, Z.; Fonseca, A.; Laurent, C.; Nagy, J. B. Large-Scale Synthesis of Single-Wall Carbon Nanotubes by Catalytic Chemical Vapor Deposition (CCVD) Method. Chem. Phys. Lett. 2000, 317, 83–89.CrossRefGoogle Scholar
  27. 26.
    Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large Area Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9(1), 30–35.CrossRefGoogle Scholar
  28. 27.
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature Lett. 2009, 457, 706–710.CrossRefGoogle Scholar
  29. 28.
    Mullen, C.; Irwin, A.; Pond, B. V.; Huestis, D. L.; Coggiola, M. J.; Oser, H. Detection of Explosives and Explosive Related Compounds (ERCs) by Single Photon Laser Ionization Time of Flight Mass Spectrometry. Anal. Chem. 2006, 78, 3807–3814.CrossRefGoogle Scholar
  30. 29.(a)
    Wei, L.; Yang, B.; Yang, R.; Huang, C.; Wang, J.; Shan, X.; Sheng, L.; Zhang, Y.; Qi, F.; Lam, C.-S.; Li, W.-K. A Vacuum Ultraviolet Photoionization Mass Spectrometric Study of Acetone. J. Phys. Chem. A. 2005, 109, 4231–4242;CrossRefGoogle Scholar
  31. 29.(b)
    Stein, S. E.; Fahr, A. High-Temperature Stabilities of Hydrocarbons. J. Phys. Chem. 1985, 89, 3714–3725.CrossRefGoogle Scholar
  32. 30.
    McEnally, C. S.; Pfefferle, L. D. An Experimental: Study in Non-Premixed Flames of Hydrocarbon Growth Processes That Involve Five-Membered Carbon Rings. Combust. Sci. Technol. 1998, 131, 323–344.CrossRefGoogle Scholar
  33. 31.
    McEnally, C. S.; Pfefferle, L. D. Improved Sooting Tendency Measurements for Aromatic Hydrocarbons and Their Implications for Naphthalene Formation Pathways. Combust. Flame. 2007, 148, 210–222.CrossRefGoogle Scholar
  34. 32.
    Lifshitz, A.; Tamburu, C.; Suslensky, A.; Dubnikova, F. Decomposition, Isomerization, and Ring Expansion in 2-Methylindene: Single-Pulse Shock Tube and Modeling Study. J. Phys. Chem. A. 2004, 108, 3430–3438.CrossRefGoogle Scholar
  35. 33.
    Levy, M.; Szwarc, M. Methyl Affinities of Aromatic Hydrocarbons. J. Chem. Phys. 1954, 22, 1621–1623.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  1. 1.AISTIbarakiJapan
  2. 2.Department of Chemical System EngineeringThe University of TokyoTokyoJapan
  3. 3.Institute of Engineering InnovationThe University of TokyoTokyoJapan

Personalised recommendations