Non-aqueous spray solvents and solubility effects in desorption electrospray ionization

  • Abraham Badu-Tawiah
  • Celine Bland
  • Dahlia I. Campbell
  • R. Graham Cooks


The use of non-aqueous solvents in desorption electrospray ionization mass spectrometry (DESI-MS) is explored by analyzing a set of 43 compounds using binary mixtures of chloroform, tetrahydrofuran, and acetonitrile as the spray solvent. Comparisons of data obtained from chloroform/tetrahydrofuran (1:1) and chloroform/acetonitrile (1:1) spray solvents with the standard aqueous-based spray solvent (methanol/water, 1:1) shows that the non-aqueous systems have practical value for DESI, especially in the analysis of hydrophobic compounds. Non-aqueous spray solvents were used to ionize thermometer molecules (benzyl pyridinium salts) and showed lower internal energies (softer DESI ionization compared with methanol/water, 1:1), a result that has parallels in known solvent effects in electrospray ionization and is explained by solvent effects on surface tension. Consideration of octanol/water partition coefficients (Kow) of the 43 analytes in the light of their DESI results reveals the importance of the solubility of analyte in the spray solvent in producing high quality mass spectra. This finding provides additional support for the droplet pick-up description of the DESI mechanism, which is based on analyte dissolution in the spray solvent, followed by splashing of subsequently arriving droplets in the liquid film to form microdroplets of dissolved analyte. DESI solvent optimization can be improved by the use of Kow of the analyte as an indication of the polarity of the most appropriate solvent system.


Desorption Electrospray Ionization Procymidone Internal Energy Distribution Survival Yield Benzyl Pyridinium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Venter, A.; Nefliu, M.; Cooks, R. G. Ambient Desorption Ionization Mass Spectrometry. Trends Anal. Chem. 2008, 27(4), 284–290.CrossRefGoogle Scholar
  2. 2.
    Harris, G. A.; Nyadong, L.; Fernandez, F. M. Recent Developments in Ambient Ionization Techniques for Analytical Mass Spectrometry. Analyst. 2008, 133, 1297–1301.CrossRefGoogle Scholar
  3. 3.
    Van Berkel, G. J.; Pasilis, S. P.; Ovchinnikova, O. Established and Emerging Atmospheric Pressure Surface Sampling/Ionization Techniques for Mass Spectrometry. J. Mass Spectrom. 2008, 43(9), 1161–1180.CrossRefGoogle Scholar
  4. 4.
    Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306, 471–473.CrossRefGoogle Scholar
  5. 5.
    Takats, Z.; Wiseman, J. M.; Cooks, R. G. Ambient Mass Spectrometry Using Desorption Electrospray Ionization (DESI): Instrumentation, Mechanisms, and Applications in Forensics, Chemistry, and Biology. J. Mass Spectrom. 2005, 40(10), 1261–1275.CrossRefGoogle Scholar
  6. 6.
    Cooks, R. G.; Ouyang, Z.; Takats, Z.; Wiseman, J. M. Ambient Mass Spectrometry. Science 2006, 311, 1566–1570.CrossRefGoogle Scholar
  7. 7.
    Cody, R. B.; Laramee, J. A.; Durst, H. D. Versatile New Ion Source for the Analysis of Materials in Open Air Under Ambient Conditions. Anal. Chem. 2005, 77(8), 2297–2302.CrossRefGoogle Scholar
  8. 8.
    Ford, M. J.; Van Berkel, G. J. An Improved Thin-Layer Chromatography/Mass Spectrometry Coupling Using a Surface Sampling Probe Electrospray Ion Trap System. Rapid Commun. Mass Spectrom. 2004, 18(12), 1303–1309.CrossRefGoogle Scholar
  9. 9.
    McEwen, C. N.; McKay, R. G.; Larsen, B. S. Analysis of Solids, Liquids, and Biological Tissues Using Solids Probe Introduction at Atmospheric Pressure on Commercial LC/MS Instruments. Anal. Chem. 2005, 77(23), 7826–7831.CrossRefGoogle Scholar
  10. 10.
    Shiea, J.; Huang, M. Z.; Hsu, H. J.; Lee, C. Y.; Yuan, C. H.; Beech, I.; Sunner, J. Electrospray-Assisted Laser Desorption Ionization Mass Spectrometry for Direct Ambient Analysis of Solids. Rapid Commun. Mass Spectrom. 2005, 19(24), 3701–3704.CrossRefGoogle Scholar
  11. 11.
    Sampson, J. S.; Hawkridge, A. M.; Muddiman, D. C. Generation and Detection of Multiply-Charged Peptides and Proteins by Matrix-Assisted Laser Desorption Electrospray Ionization (MALDESI) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2006, 17(12), 1712–1716.CrossRefGoogle Scholar
  12. 12.
    Chen, H.; Venter, A.; Cooks, R. G. Extractive Electrospray Ionization for Direct Analysis of Undiluted Urine, Milk, and Other Complex Mixtures Without Sample Preparation. Chem. Commun. 2006, 2042–2044.Google Scholar
  13. 13.
    Haddad, R.; Sparrapan, R.; Eberlin, M. N. Desorption Sonic Spray Ionization for (High) Voltage-Free Ambient Mass Spectrometry. Rapid Commun. Mass Spectrom. 2006, 20(19), 2901–2905.CrossRefGoogle Scholar
  14. 14.
    Ratcliffe, L. V.; Rutten, F. J. M.; Barrett, D. A.; Whitemore, T.; Seymour, D.; Greenwood, C.; Aranda-Gonzalvo, Y.; Robinson, S.; McCoustra, M. Surface Analysis under Ambient Conditions Using Plasma-Assisted Desorption/Ionization Mass Spectrometry. Anal. Chem. 2007, 79(16), 6094–6101.CrossRefGoogle Scholar
  15. 15.
    Chen, H.; Yang, S.; Wortmann, A.; Zenobi, R. Neutral Desorption Sampling of Living Objects for Rapid Analysis by Extractive Electrospray Ionization Mass Spectrometry. Angew. Chem. Int. Ed. Engl. 2007, 46, 7591–7594.CrossRefGoogle Scholar
  16. 16.
    Nemes, P.; Vertes, A. Laser Ablation: Electrospray Ionization for Atmospheric Pressure, In Vivo, and Imaging Mass Spectrometry. Anal. Chem. 2007, 79(21), 8098–8106.CrossRefGoogle Scholar
  17. 17.
    Haapala, M.; Pol, J.; Saarela, V.; Arvola, V.; Kotiaho, T.; Ketola, R. A.; Franssila, S.; Kauppila, T. J.; Kostiainen, R. Desorption Atmospheric Pressure Photoionization. Anal. Chem. 2007, 79(20), 7867–7872.CrossRefGoogle Scholar
  18. 18.
    Weston, D. J.; Bateman, R.; Wilson, I. D.; Wood, T. R.; Creaser, C. S. Direct Analysis of Pharmaceutical Drug Formulations Using Ion Mobility Spectrometry/Quadrupole-Time-of-Flight Mass Spectrometry Combined with Desorption Electrospray Ionization. Anal. Chem. 2005, 77(23), 7572–7580.CrossRefGoogle Scholar
  19. 19.
    Zhou, J.; Yao, S.; Qian, R.; Xu, Z.; Wei, Y.; Guo, Y. Observation of Allicin-Cysteine Complex by Reactive Desorption Electrospray Ionization Mass Spectrometry for Garlic. Rapid Commun. Mass Spectrom. 2008, 22(20), 3334–3337.CrossRefGoogle Scholar
  20. 20.
    Nyadong, L.; Green, M. D.; De Jesus, V. R.; Newton, P. N.; Fernández, F. M. Reactive Desorption Electrospray Ionization Linear Ion Trap Mass Spectrometry of Latest-Generation Counterfeit Antimalarials via Noncovalent Complex Formation. Anal. Chem. 2007, 79(5), 2150–2157.CrossRefGoogle Scholar
  21. 21.
    Huang, G.; Chen, H.; Zhang, X.; Cooks, R. G.; Ouyang, Z. Rapid Screening of Anabolic Steroids in Urine by Reactive Desorption Electrospray Ionization. Anal. Chem. 2007, 79(21), 8327–8332.CrossRefGoogle Scholar
  22. 22.
    Volny, M.; Venter, A.; Smith, S. A.; Pazzi, M.; Cooks, R. G. Surface Effects and Electrochemical Cell Capacitance in Desorption Electrospray Ionization. Analyst 2008, 133, 525–531.CrossRefGoogle Scholar
  23. 23.
    Wu, C.; Ifa, D. R.; Manicke, N. E.; Cooks, R. G. Rapid, Direct Analysis of Cholesterol by Charge Labeling in Reactive Desorption Electrospray Ionization. Anal. Chem. 2009, 81(18), 7618–7624.CrossRefGoogle Scholar
  24. 24.
    García-Reyes, J. F.; Jackson, A. U.; Molina-Díaz, A.; Cooks, R. G. Desorption Electrospray Ionization Mass Spectrometry for Trace Analysis of Agrochemicals in Food. Anal. Chem. 2009, 81(2), 820–829.CrossRefGoogle Scholar
  25. 25.
    Van Berkel, G. J.; Tomkins, B. A.; Kertesz, V. Thin-Layer Chromatography/Desorption Electrospray Ionization Mass Spectrometry: Investigation of Goldenseal Alkaloids. Anal. Chem. 2007, 79(7), 2778–2789.CrossRefGoogle Scholar
  26. 26.
    Pasilis, Sofie P.; Kertesz, Vilmos; Van Berkel, Gary J. Surface Scanning Analysis of Planar Arrays of Analytes with Desorption Electrospray Ionization-Mass Spectrometry. Anal. Chem. 2007, 79(15), 5956–5962.CrossRefGoogle Scholar
  27. 27.
    Kertesz, V.; Van Berkel, G. J. Improved Desorption Electrospray Ionization Mass Spectrometry Performance Using Edge Sampling and a Rotational Sample Stage. Rapid Commun. Mass Spectrom. 2008, 22(23), 3846–3850.CrossRefGoogle Scholar
  28. 28.
    Costa, A. B.; Cooks, R. G. Simulated Splashes: Elucidating the Mechanism of Desorption Electrospray Ionization Mass Spectrometry. Chem. Phys. Lett. 2008, 464(1/3), 1–8.CrossRefGoogle Scholar
  29. 29.
    Venter, A.; Sojka, P. E.; Cooks, R. G. Droplet Dynamics and Ionization Mechanisms in Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 2006, 78(24), 8549–8555.CrossRefGoogle Scholar
  30. 30.
    Manicke, N. E.; Wiseman, J. M.; Ifa, D. R.; Cook, R. G. Desorption Electrospray Ionization (DESI) Mass Spectrometry and Tandem Mass Spectrometry (MS/MS) of Phospholipids and Sphingolipids: Ionization, Adduct Formation, and fragmentation. J. Am. Soc. Mass Spectrom. 2008, 19(4), 531–543.CrossRefGoogle Scholar
  31. 31.
    Loriau, M.; Alves, S.; Churlaud, F.; Tabet, J. C. Solvent Effects on the DESI Mass Spectra of Industrial Polymers and Additive. Presented at Proceedings of the 57th ASMS conference, Philadelphia, PA, 2009.Google Scholar
  32. 32.
    Hagan, N. A.; Cornish, T. J.; Pilato, R. S.; Van Houten, K. A.; Antoine, M. D.; Lippa, T. P.; Becknell, A. F.; Demirev, P. A. Detection and Identification of Immobilized Low-Volatility Organophosphates by Desorption Ionization Mass Spectrometry. Int. J Mass Spectrom. 2008, 278(2/3), 158–165.CrossRefGoogle Scholar
  33. 33.
    Cotte-Rodriguez, I.; Takats, Z.; Talaty, N.; Chen, H.; Cooks, R. G. Desorption Electrospray Ionization of Explosives on Surfaces: Sensitivity and Selectivity Enhancement by Reactive Desorption Electrospray Ionization. Anal. Chem. 2005, 77(21), 6755–6764.CrossRefGoogle Scholar
  34. 34.
    Chen, H.; Cotte-Rodriguez, I.; Cooks, R. G. cis-Diol Functional Group Recognition by Reactive Desorption Electrospray Ionization (DESI). Chem. Commun. 2006, 6, 597–599.CrossRefGoogle Scholar
  35. 35.
    Song, Y.; Cooks, R. G. Reactive Desorption Electrospray Ionization for Selective Detection of the Hydrolysis Products of Phosphonate Esters. J. Mass Spectrom. 2007, 42(8), 1086–1092.CrossRefGoogle Scholar
  36. 36.
    Naban-Maillet, J.; Lesage, D.; Bossee, A.; Gimbert, Y.; Sztaray, J.; Vekey, K.; Tabet, J. C. Internal Energy Distribution in Electrospray Ionization. J. Mass Spectrom. 2005, 40(1), 1–8.CrossRefGoogle Scholar
  37. 37.
    Blasco, C.; Pico, Y.; Manes, J.; Font, G. Determination of Fungicide Residues in Fruits and Vegetables by Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry. J. Chromatogr. A. 2002, 947(2), 227–235.CrossRefGoogle Scholar
  38. 38.
    Rudy, B. C.; Senkowski, B. Z. Sulfamethoxazole. Anal. Profiles Drug Subst. 1973, 2, 467–486.CrossRefGoogle Scholar
  39. 39.
    Gennaro, A. R. Remington: The Science and Practice of Pharmacy, 19th ed., Vol. II.; Mack Publishing Co.: Easton, PA, 1995; 1276–1277.Google Scholar
  40. 40.
    Shareef, A.; Angove, M.; Well, D. J.; Johnson, B. B. Aqueous Solubilities of Estrone, 17b-Estradiol, 17a-Ethynylestradiol, and Bisphenol A. J. Chem. Eng. Data. 2006, 51(3), 879–881.CrossRefGoogle Scholar
  41. 41.
    Torrents, A.; Jayasundera, S. The Sorption of Nonionic Pesticides onto Clays and the Influence of Natural Organic Carbon. Chemosphere 1997, 35(17), 1549–1565.CrossRefGoogle Scholar
  42. 42.
    Catchpole, C.; Andrews, J. M.; Woodcock, J.; Wise, R. The Comparative Pharmacokinetics and Tissue Penetration of Single-Dose Ciprofloxacin 400 mg i. v. and 750 mg p. o. J. Antimicrob. Chemother. 1994, 33, 103–110.CrossRefGoogle Scholar
  43. 43.
    Braekevelt, E.; Tittlemier, S. A.; Gregg, T. T. Direct Measurement of Octanol-Water Partition Coefficients of Some Environmentally Relevant Brominated Diphenyl Ether Congeners. Chemosphere 2003, 51(7), 563–567.CrossRefGoogle Scholar
  44. 44.
    Collette, C.; Drahos, L.; De Pauw, E.; V′ekey, K. Comparison of the Internal Energy Distributions of Ions Produced by Different Electrospray Sources. Rapid Commun. Mass Spectrom. 1998, 12(22), 1673–1678.CrossRefGoogle Scholar
  45. 45.
    Derwa, F.; De Pauw, E.; Natalis, P. New Basis for a Method for the Estimation for Secondary Ion Internal Energy Distribution in [soft] Ionization Techniques. Org. Mass Spectrom. 1991, 26(2), 117–118.CrossRefGoogle Scholar
  46. 46.
    Nefliu, M.; Smith, J. N.; Venter, A.; Cooks, R. G. Internal Energy Distributions in Desorption Electrospray Ionization (DESI). J. Am. Soc. Mass Spectrom. 2008, 19(3), 420–427.CrossRefGoogle Scholar
  47. 47.
    Gabelica, V.; De Pauw, E.; Karas, M. Influence of the Capillary Temperature and the Source Pressure on the Internal Energy Distribution of Electrosprayed Ions. Int. J. Mass Spectrom. 2004, 231, 189–195.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Abraham Badu-Tawiah
    • 1
  • Celine Bland
    • 1
  • Dahlia I. Campbell
    • 1
  • R. Graham Cooks
    • 1
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations