Current limitations in native mass spectrometry based structural biology

Critical Insight

Abstract

Nowadays, mass spectrometry plays an important role in structural biology. At one end it can be used to investigate intact protein complexes, providing details about the complex composition, topology, stability, and dynamics, whereas at the other end the protein’s identity and possible modifications can be visualized using proteomics approaches. Combining all this information allows the generation of detailed models for functional biological assemblies. Here, a perspective on the application of native mass spectrometry in structural biology is presented. The potential of this technique and some important current limitations are discussed. This includes issues regarding the quality/homogeneity of the sample, the dissociation efficiency of protein complexes during tandem mass spectrometric analysis, and some boundaries of ion mobility mass spectrometry.

Supplementary material

13361_2011_210600971_MOESM1_ESM.doc (152 kb)
Supplementary material, approximately 156 KB.

References

  1. 1.
    Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R. Quantitative Analysis of Complex Protein Mixtures using Isotope-Coded Affinity Tags. Nat. Biotechnol. 1999, 17, 994–999.CrossRefGoogle Scholar
  2. 2.
    Heck, A. J.; Krijgsveld, J. Mass Spectrometry-Based Quantitative Proteomics. Expert Rev. Proteom. 2004, 1, 317–326.CrossRefGoogle Scholar
  3. 3.
    Hu, Q.; Noll, R. J.; Li, H.; Makarov, A.; Hardman, M.; Graham Cooks, R. The Orbitrap: A New Mass Spectrometer. J. Mass Spectrom. 2005, 40, 430–443.CrossRefGoogle Scholar
  4. 4.
    Makarov, A. Electrostatic Axially Harmonic Orbital Trapping: A High-Performance Technique of Mass Analysis. Anal. Chem. 2000, 72, 1156–1162.CrossRefGoogle Scholar
  5. 5.
    Ong, S. E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandey, A.; Mann, M. Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics. Mol. Cell. Proteom. 2002, 1, 376–386.CrossRefGoogle Scholar
  6. 6.
    Syka, J. E.; Marto, J. A.; Bai, D. L.; Horning, S.; Senko, M. W.; Schwartz, J. C.; Ueberheide, B.; Garcia, B.; Busby, S.; Muratore, T.; Shabanowitz, J.; Hunt, D. F. Novel Linear Quadrupole Ion trap/FT Mass Spectrometer: Performance Characterization and use in the Comparative Analysis of Histone H3 Post-Translational Modifications. J. Proteome Res. 2004, 3, 621–626.CrossRefGoogle Scholar
  7. 7.
    Boersema, P. J.; Raijmakers, R.; Lemeer, S.; Mohammed, S.; Heck, A. J. Multiplex Peptide Stable Isotope Dimethyl Labeling for Quantitative Proteomics. Nat. Protoc. 2009, 4, 484–494.CrossRefGoogle Scholar
  8. 8.
    van den Heuvel, R. H.; Heck, A. J. Native Protein Mass Spectrometry: From Intact Oligomers to Functional Machineries. Curr. Opin. Chem. Biol. 2004, 8, 519–526.CrossRefGoogle Scholar
  9. 9.
    Kaddis, C. S.; Loo, J. A. Native Protein MS and Ion Mobility Large Flying Proteins with ESI. Anal. Chem. 2007, 79, 1778–1784.CrossRefGoogle Scholar
  10. 10.
    Ganem, B.; Li, Y. T.; Henion, J. D. Detection of Noncovalent Receptor-Ligand Complexes by Mass Spectrometry. J. Am. Chem. Soc. 1991, 113, 6294–6296.CrossRefGoogle Scholar
  11. 11.
    Videler, H.; Ilag, L. L.; McKay, A. R.; Hanson, C. L.; Robinson, C. V. Mass Spectrometry of Intact Ribosomes. FEBS Lett. 2005, 579, 943–947.CrossRefGoogle Scholar
  12. 12.
    Uetrecht, C.; Versluis, C.; Watts, N. R.; Roos, G. J. L.; Wingfield, P. T.; Steven, A. C.; Heck, A. J. High Resolution Mass Spectrometry of Viral Assemblies: Molecular Composition and Stability of Dimorphic Hepatitis B Virus Capsids. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 9216–9220.CrossRefGoogle Scholar
  13. 13.
    van Duijn, E.; Barendregt, A.; Uetrecht, C.; Lorenzen, K.; Rose, R. J.; Shoemaker, G.; Heck, A. J. Investigation of Intact Protein Complexes and Protein-Protein Interactions by Native Ion Mobility and Tandem Mass Spectrometry. Proceedings of the 57th ASMS Conference; Philadelphia, May 31-June 4, 2009.Google Scholar
  14. 14.
    Hartl, F. U.; Hayer-Hartl, M. Molecular Chaperones in the Cytosol: From Nascent Chain to Folded Protein. Science 2002, 295, 1852–1858.CrossRefGoogle Scholar
  15. 15.
    Hartl, F. U.; Hayer-Hartl, M. Converging Concepts of Protein Folding In Vitro and In Vivo. Nat. Struct. Mol. Biol. 2009, 16, 574–581.CrossRefGoogle Scholar
  16. 16.
    Ross, C. A.; Poirier, M. A. Protein Aggregation and Neurodegenerative Disease. Nat. Med. 2004, 10(Suppl.), 10–17.CrossRefGoogle Scholar
  17. 17.
    Benesch, J. L.; Ruotolo, B. T.; Simmons, D. A.; Robinson, C. V. Protein Complexes in the Gas Phase: Technology for Structural Genomics and Proteomics. Chem. Rev. 2007, 107, 3544–3567.CrossRefGoogle Scholar
  18. 18.
    Heck, A. J.; Van Den Heuvel, R. H. Investigation of Intact Protein Complexes by Mass Spectrometry. Mass Spectrom Rev. 2004, 23, 368–389.CrossRefGoogle Scholar
  19. 19.
    Heck, A. J. Native Mass Spectrometry: A Bridge Between Interactomics and Structural Biology. Nat. Methods 2008, 5, 927–933.CrossRefGoogle Scholar
  20. 20.
    Lorenzen, K.; Vannini, A.; Cramer, P.; Heck, A. J. Structural Biology of RNA Polymerase III: Mass Spectrometry Elucidates Subcomplex Architecture. Structure 2007, 15, 1237–1245.CrossRefGoogle Scholar
  21. 21.
    Ruotolo, B. T.; Benesch, J. L.; Sandercock, A. M.; Hyung, S. J.; Robinson, C. V. Ion Mobility-Mass Spectrometry Analysis of Large Protein Complexes. Nat. Protoc. 2008, 3, 1139–1152.CrossRefGoogle Scholar
  22. 22.
    Sharon, M.; Robinson, C. V. The Role of Mass Spectrometry in Structure Elucidation of Dynamic Protein Complexes. Annu. Rev. Biochem. 2007, 76, 167–193.CrossRefGoogle Scholar
  23. 23.
    Sharon, M.; Mao, H.; Boeri Erba, E.; Stephens, E.; Zheng, N.; Robinson, C. V. Symmetrical Modularity of the COP9 Signalosome Complex Suggests Its Multifunctionality. Structure 2009, 17, 31–40.CrossRefGoogle Scholar
  24. 24.
    Taverner, T.; Hernandez, H.; Sharon, M.; Ruotolo, B. T.; Matak-Vinkovic, D.; Devos, D.; Russell, R. B.; Robinson, C. V. Subunit Architecture of Intact Protein Complexes from Mass Spectrometry and Homology Modeling. Acc. Chem. Res. 2008, 41, 617–627.CrossRefGoogle Scholar
  25. 25.
    van Duijn, E.; Barendregt, A.; Synowsky, S.; Versluis, C.; Heck, A. J. Chaperonin Complexes Monitored by Ion Mobility Mass Spectrometry. J. Am. Chem. Soc. 2009, 131, 1452–1459.CrossRefGoogle Scholar
  26. 26.
    Robinson, C. V.; Sali, A.; Baumeister, W. The Molecular Sociology of the Cell. Nature 2007, 450, 973–982.CrossRefGoogle Scholar
  27. 27.
    Mohammed, S.; Lorenzen, K.; Kerkhoven, R.; van Breukelen, B.; Vannini, A.; Cramer, P.; Heck, A. J. Multiplexed Proteomics Mapping of Yeast RNA Polymerase II and III Allows Near-Complete Sequence Coverage and Reveals several Novel Phosphorylation Sites. Anal. Chem. 2008, 80, 3584–3592.CrossRefGoogle Scholar
  28. 28.
    Sobott, F.; Hernandez, H.; McCammon, M. G.; Tito, M. A.; Robinson, C. V. A Tandem Mass Spectrometer for Improved Transmission and Analysis of Large Macromolecular Assemblies. Anal. Chem. 2002, 74, 1402–1407.CrossRefGoogle Scholar
  29. 29.
    Ruotolo, B. T.; Giles, K.; Campuzano, I.; Sandercock, A. M.; Bateman, R. H.; Robinson, C. V. Evidence for Macromolecular Protein Rings in the Absence of Bulk Water. Science 2005, 310, 1658–1661.CrossRefGoogle Scholar
  30. 30.
    Pringle, S. D.; Giles, K.; Wildgoose, J. L.; Williams, J. P.; Slade, S. E.; Thalassinos, K.; Bateman, R. H.; Bowers, M. T.; Scrivens, J. H. An Investigation of the Mobility Separation of Some Peptide and Protein Ions using a New Hybrid Quadrupole/Traveling Wave IMS/oa-TOF Instrument. Int. J. Mass Spectrom. 2007, 261, 1–12.CrossRefGoogle Scholar
  31. 31.
    Lorenzen, K.; Olia, A. S.; Uetrecht, C.; Cingolani, G.; Heck, A. J. Determination of Stoichiometry and Conformational Changes in the First Step of the P22 Tail Assembly. J. Mol. Biol. 2008, 379, 385–396.CrossRefGoogle Scholar
  32. 32.
    Benesch, J. L.; Aquilina, J. A.; Ruotolo, B. T.; Sobott, F.; Robinson, C. V. Tandem Mass Spectrometry Reveals the Quaternary Organization of Macromolecular Assemblies. Chem. Biol. 2006, 13, 597–605.CrossRefGoogle Scholar
  33. 33.
    Benesch, J. L. Collisional Activation of Protein Complexes: Picking Up the Pieces. J. Am. Soc. Mass Spectrom. 2009, 20, 341–348.CrossRefGoogle Scholar
  34. 34.
    Benesch, J. L.; Ayoub, M.; Robinson, C. V.; Aquilina, J. A. Small Heat Shock Protein Activity is Regulated by Variable Oligomeric Substructure. J. Biol. Chem. 2008, 283, 28513–28517.CrossRefGoogle Scholar
  35. 35.
    McCammon, M. G.; Scott, D. J.; Keetch, C. A.; Greene, L. H.; Purkey, H. E.; Petrassi, H. M.; Kelly, J. W.; Robinson, C. V. Screening Transthyretin Amyloid Fibril Inhibitors: Characterization of Novel Multiprotein, Multiligand Complexes by Mass Spectrometry. Structure 2002, 10, 851–863.CrossRefGoogle Scholar
  36. 36.
    Poliakov, A.; van Duijn, E.; Lander, G.; Fu, C. Y.; Johnson, J. E.; Prevelige, P. E., Jr; Heck, A. J. Macromolecular Mass Spectrometry and Electron Microscopy as Complementary Tools for Investigation of the Heterogeneity of Bacteriophage Portal Assemblies. J. Struct. Biol. 2007, 157, 371–383.CrossRefGoogle Scholar
  37. 37.
    de Geus, D. C.; Thomassen, E. A.; Hagedoorn, P. L.; Pannu, N. S.; van Duijn, E.; Abrahams, J. P. Crystal Structure of Chlorite Dismutase, a Detoxifying Enzyme Producing Molecular Oxygen. J. Mol. Biol. 2009, 387, 192–206.CrossRefGoogle Scholar
  38. 38.
    Loo, J. A.; Berhane, B.; Kaddis, C. S.; Wooding, K. M.; Xie, Y.; Kaufman, S. L.; Chernushevich, I. V. Electrospray Ionization Mass Spectrometry and Ion Mobility Analysis of the 20S Proteasome Complex. J. Am. Soc. Mass Spectrom. 2005, 16, 998–1008.CrossRefGoogle Scholar
  39. 39.
    van Duijn, E.; Bakkes, P. J.; Heeren, R. M.; van den Heuvel, R. H.; van Heerikhuizen, H.; van der Vies, S. M.; Heck, A. J. Monitoring Macromolecular Complexes Involved in the Chaperonin-Assisted Protein Folding Cycle by Mass Spectrometry. Nat. Methods 2005, 2, 371–376.CrossRefGoogle Scholar
  40. 40.
    Zhou, M.; Sandercock, A. M.; Fraser, C. S.; Ridlova, G.; Stephens, E.; Schenauer, M. R.; Yokoi-Fong, T.; Barsky, D.; Leary, J. A.; Hershey, J. W.; Doudna, J. A.; Robinson, C. V. Mass Spectrometry Reveals Modularity and a Complete Subunit Interaction Map of the Eukaryotic Translation Factor eIF3. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 18139–18144.CrossRefGoogle Scholar
  41. 41.
    Black, L. W. DNA Packaging in dsDNA Bacteriophages. Annual Review of Microbiology. 1989, 43, 267–292.CrossRefGoogle Scholar
  42. 42.
    Mitchell, M. S.; Rao, V. B. Functional Analysis of the Bacteriophage T4 DNA-Packaging ATPase Motor. The J. Biol. Chem. 2006, 281, 518–527.CrossRefGoogle Scholar
  43. 43.
    Williams, R. S.; Williams, G. J.; Tainer, J. A. A Charged Performance by gp17 in Viral Packaging. Cell 2008, 135, 1169–1171.CrossRefGoogle Scholar
  44. 44.
    Lin, H.; Simon, M. N.; Black, L. W. Purification and Characterization of the Small Subunit of Phage T4 Terminase, gp16, Required for DNA Packaging. J. Biol. Chem. 1997, 272, 3495–3501.CrossRefGoogle Scholar
  45. 45.
    van Breukelen, B.; Barendregt, A.; Heck, A. J.; van den Heuvel, R. H. Resolving Stoichiometries and Oligomeric States of Glutamate Synthase Protein Complexes with Curve Fitting and Simulation of Electrospray Mass Spectra. Rapid Commun. Mass Spectrom. 2006, 20, 2490–2496.CrossRefGoogle Scholar
  46. 46.
    Sun, S.; Kondabagil, K.; Draper, B.; Alam, T. I.; Bowman, V. D.; Zhang, Z.; Hegde, S.; Fokine, A.; Rossmann, M. G.; Rao, V. B. The Structure of the Phage T4 DNA Packaging Motor Suggests a Mechanism Dependent on Electrostatic Forces. Cell 2008, 135, 1251–1262.CrossRefGoogle Scholar
  47. 47.
    Hernandez, H.; Robinson, C. V. Determining the Stoichiometry and Interactions of Macromolecular Assemblies from Mass Spectrometry. Nat. Protoc. 2007, 2, 715–726.CrossRefGoogle Scholar
  48. 48.
    Lorenzen, K.; van Duijn, E. Native Mass Spectrometry as a Tool in Structural Biology. Curr. Protoc. Protein Sci. accepted.Google Scholar
  49. 49.
    Bartesaghi, A.; Subramaniam, S. Membrane Protein Structure Determination using Cryo-Electron Tomography and 3D Image Averaging. Curr. Opin. Struct. Biol. 2009, 19, 402–407.CrossRefGoogle Scholar
  50. 50.
    Raunser, S.; Walz, T. Electron Crystallography as a Technique to Study the Structure on Membrane Proteins in a Lipidic Environment. Annu. Rev. Biophys. 2009, 38, 89–105.CrossRefGoogle Scholar
  51. 51.
    Barrera, N. P.; Isaacson, S. C.; Zhou, M.; Bavro, V. N.; Welch, A.; Schaedler, T. A.; Seeger, M. A.; Miguel, R. N.; Korkhov, V. M.; van Veen, H. W.; Venter, H.; Walmsley, A. R.; Tate, C. G.; Robinson, C. V. Mass Spectrometry of Membrane Transporters Reveals Subunit Stoichiometry and Interactions. Nat. Methods 2009, 6, 585–587.CrossRefGoogle Scholar
  52. 52.
    Barrera, N. P.; Di Bartolo, N.; Booth, P. J.; Robinson, C. V. Micelles Protect Membrane Complexes from Solution to Vacuum. Science 2008, 321, 243–246.CrossRefGoogle Scholar
  53. 53.
    van den Heuvel, R. H.; van Duijn, E.; Mazon, H.; Synowsky, S. A.; Lorenzen, K.; Versluis, C.; Brouns, S. J.; Langridge, D.; van der Oost, J.; Hoyes, J.; Heck, A. J. Improving the Performance of a Quadrupole Time-of-Flight Instrument for Macromolecular Mass Spectrometry. Anal. Chem. 2006, 78, 7473–7483.CrossRefGoogle Scholar
  54. 54.
    van Duijn, E.; Simmons, D. A.; van den Heuvel, R. H.; Bakkes, P. J.; van Heerikhuizen, H.; Heeren, R. M.; Robinson, C. V.; van der Vies, S. M.; Heck, A. J. Tandem Mass Spectrometry of Intact GroEL-Substrate Complexes Reveals Substrate-Specific Conformational Changes in the Trans Ring. J. Am. Chem. Soc. 2006, 128, 4694–4702.CrossRefGoogle Scholar
  55. 55.
    Lomeli, S. H.; Yin, S.; Ogorzalek Loo, R. R.; Loo, J. A. Increasing Charge While Preserving Noncovalent Protein Complexes for ESI-MS. J. Am. Soc. Mass Spectrom. 2009, 20, 593–596.CrossRefGoogle Scholar
  56. 56.
    Lomeli, S. H.; Peng, I. X.; Yin, S.; Loo, R. R. O.; Loo, J. A. New Reagents for Increasing ESI Multiple Charging of Proteins and Protein Complexes. J. Am. Soc. Mass Spectrom. 2010, 21, 126–131.CrossRefGoogle Scholar
  57. 57.
    Pukala, T. L.; Ruotolo, B. T.; Zhou, M.; Politis, A.; Stefanescu, R.; Leary, J. A.; Robinson, C. V. Subunit Architecture of Multiprotein Assemblies Determined Using Restraints from Gas-Phase Measurements. Structure 2009, 17, 1235–1243.CrossRefGoogle Scholar
  58. 58.
    Smith, L. M. Is Charge Reduction in ESI really Necessary? J. Am. Soc. Mass Spectrom. 2008, 19, 629–631.CrossRefGoogle Scholar
  59. 59.
    Frey, B. L.; Krusemark, C. J.; Ledvina, A. R.; Coon, J. J.; Belshaw, P. J.; Smith, L. M. Ion-Ion Reactions with Fixed-Charge Modified Proteins to Produce Ions in a Single, Very High Charge State. Int. J. Mass Spectrom. 2008, 276, 136–143.CrossRefGoogle Scholar
  60. 60.
    Pitteri, S. J.; McLuckey, S. A. Recent Developments in the Ion/Ion Chemistry of High-Mass Multiply Charged Ions. Mass Spectrom. Rev. 2005, 24, 931–958.CrossRefGoogle Scholar
  61. 61.
    Xie, Y.; Zhang, J.; Yin, S.; Loo, J. A. Top-Down ESI-ECD-FT-ICR Mass Spectrometry Localizes Noncovalent Protein-Ligand Binding Sites. J. Am. Chem. Soc. 2006, 128, 14432–14433.CrossRefGoogle Scholar
  62. 62.
    Breuker, K.; Jin, M.; Han, X.; Jiang, H.; McLafferty, F. W. Top-Down Identification and Characterization of Biomolecules by Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19, 1045–1053.CrossRefGoogle Scholar
  63. 63.
    Uetrecht, C, Rose, R. J., van Duijn, E., Lorenzen, K., Heck, A. J. Ion Mobility Mass Spectrometry of Proteins and Protein Assemblies. Chem. Soc. Rev. in press.Google Scholar
  64. 64.
    Liu, L.; Bagal, D.; Kitova, E. N.; Schnier, P. D.; Klassen, J. S. Hydrophobic Protein-Ligand Interactions Preserved in the Gas Phase. J. Am. Chem. Soc. 2009, 131, 15980–15981.CrossRefGoogle Scholar
  65. 65.
    Ruotolo, B. T.; Hyung, S. J.; Robinson, P. M.; Giles, K.; Bateman, R. H.; Robinson, C. V. Ion Mobility-Mass Spectrometry Reveals Long-Lived, Unfolded Intermediates in the Dissociation of Protein Complexes. Angew. Chem. Int. Ed. 2007, 46, 8001–8004.CrossRefGoogle Scholar
  66. 66.
    Uetrecht, C.; Versluis, C.; Watts, N. R.; Wingfield, P. T.; Steven, A. C.; Heck, A. J. Stability and Shape of Hepatitis B Virus Capsids In Vacuo. Angew. Chem. Int. Ed. Engl. 2008, 47, 6247–6251.CrossRefGoogle Scholar
  67. 67.
    Catalina, M. I.; van den Heuvel, R. H.; van Duijn, E.; Heck, A. J. Decharging of Globular Proteins and Protein Complexes in Electrospray. Chemistry 2005, 11, 960–968.CrossRefGoogle Scholar
  68. 68.
    Sun, J.; Kitova, E. N.; Klassen, J. S. Method for Stabilizing Protein-Ligand Complexes in Nanoelectrospray Ionization Mass Spectrometry. Anal. Chem. 2007, 79, 416–425.CrossRefGoogle Scholar
  69. 69.
    Ebeling, D. D.; Westphall, M. S.; Scalf, M.; Smith, L. M. Corona Discharge in Charge Reduction Electrospray Mass Spectrometry. Anal. Chem. 2000, 72, 5158–5161.CrossRefGoogle Scholar
  70. 70.
    Chen, X.; Westphall, M. S.; Smith, L. M. Mass Spectrometric Analysis of DNA Mixtures: Instrumental Effects Responsible for Decreased Sensitivity with Increasing Mass. Anal. Chem. 2003, 75, 5944–5952.CrossRefGoogle Scholar
  71. 71.
    Giles, K.; Pringle, S. D.; Worthington, K. R.; Little, D.; Wildgoose, J. L.; Bateman, R. H. Applications of a Traveling Wave-Based Radio-Frequency-Only Stacked Ring Ion Guide. Rapid Commun. Mass Spectrom. 2004, 18, 2401–2414.CrossRefGoogle Scholar
  72. 72.
    Clemmer Cross Section Database. Http://www.Indiana.edu/~clemmer.Google Scholar
  73. 73.
    Bakkes, P. J.; Faber, B. W.; van Heerikhuizen, H.; van der Vies, S. M. The T4-Encoded Cochaperonin, gp31, Has Unique Properties that Explain Its Requirement for the Folding of the T4 Major Capsid Protein. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 8144–8149.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  1. 1.Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations