Detection of nucleic acid-nuclear hormone receptor complexes with mass spectrometry

  • Claudia Bich
  • Cédric Bovet
  • Natacha Rochel
  • Carole Peluso-Iltis
  • Andreas Panagiotidis
  • Alexis Nazabal
  • Dino Moras
  • Renato Zenobi
Article

Abstract

Nuclear receptors, such as the retinoic acid receptor (RAR) or the 9-cis retinoic acid receptor (RXR), interact not only with their ligands but also with other types of receptors and with DNA. Here, two complementary mass spectrometry (MS) methods were used to study the interactions between retinoic receptors (RXR/RAR) and DNA: non-denaturing nano-electrospray (nanoESI MS), and high-mass matrix-assisted laser desorption ionization (MALDI MS) combined with chemical cross-linking. The RAR·RXR heterodimer was studied in the presence of a specific DNA sequence (DR5), and a specific RAR·RXR·DNA complex was detected with both MS techniques. RAR by itself showed no significant homodimerization. A complex between RAR and the double stranded DR5 was detected with nanoESI. After cross-linking, high-mass MALDI mass spectra showed that the RAR binds the single stranded DR5, and the RAR dimer binds both single and double stranded DR5. Moreover, the MALDI mass spectrum shows a larger RAR dimer signal in the presence of DNA. These results suggest that a gene-regulatory site on DNA can induce quaternary structural changes in a transcription factor such as RAR.

Keywords

Retinoic Acid Retinoic Acid Receptor Charge State Distribution Noncovalent Complex MALDI Mass Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mascrez, B.; Ghyselinck, N. B.; Chambon, P.; Mark, M.; A Transcriptionally Silent RXR α Supports Early Embryonic Morphogenesis and Heart Development. Natl. Acad. Sci. U.S.A. 2009, 106, 4272–4277.CrossRefGoogle Scholar
  2. 2.
    Zhang, X. K.; Lehmann, J.; Hoffmann, B.; Dawson, M. I.; Cameron, J.; Graupner, G.; Hermann, T.; Tran, P.; Pfahl, M.; Homodimer Formation of Retinoid X-Receptor Induced by 9-cis-Retinoic Acid. Nature 1992, 358, 587–591.CrossRefGoogle Scholar
  3. 3.
    Mangelsdorf, D. J.; Evans, R. M.; The RXR Heterodimers and Orphan Receptors. Cell 1995, 83, 841–850.CrossRefGoogle Scholar
  4. 4.
    Benoit, G. R.; Flexor, M.; Besancon, F.; Altucci, L.; Rossin, A.; Hillion, J.; Balajthy, Z.; Legres, L.; Segal-Bendirdjian, E.; Gronemeyer, H.; Lanotte, M.; Autonomous Rexinoid Death Signaling is Suppressed by Converging Signaling Pathways in Immature Leukemia Cells. Mol. Endocrinol. 2001, 15, 1154–1169.CrossRefGoogle Scholar
  5. 5.
    Mic, F. A.; Molotkov, A.; Benbrook, D. M.; Duester, G.; Retinoid Activation of Retinoic Acid Receptor but Not Retinoid X Receptor is Sufficient to Rescue Lethal Defect in Retinoic Acid Synthesis. Natl. Acad. Sci. U.S.A. 2003, 100, 7135–7140.CrossRefGoogle Scholar
  6. 6.
    de Lera, A. R.; Bourguet, W.; Altucci, L.; Gronemeyer, H.; Design of Selective Nuclear Receptor Modulators: RAR and RXR as a Case Study. Nat. Rev. Drug Discov. 2007, 6, 811–820.CrossRefGoogle Scholar
  7. 7.
    Leid, M.; Kastner, P.; Lyons, R.; Nakshatri, H.; Saunders, M.; Zacharewski, T.; Chen, J. Y.; Staub, A.; Garnier, J. M.; Mader, S.; Chambon, P.; Purification, Cloning, and RXR Identity of the HeLa-Cell Factor with Which RAR or TR Heterodimerizes to Bind Target Sequences Efficiently. Cell 1992, 68, 377–395.CrossRefGoogle Scholar
  8. 8.
    Germain, P.; Chambon, P.; Eichele, G.; Evans, R. M.; Lazar, M. A.; Leid, M.; de Lera, A. R.; Lotan, R.; Mangelsdorf, D. J.; Gronemeyer, H.; International Union of Pharmacology LX Retinoic Acid Receptors. Pharmacol. Rev. 2006, 58, 712–725.CrossRefGoogle Scholar
  9. 9.
    Chambon, P.; A Decade of Molecular Biology of Retinoic Acid Receptors. FASEB J. 1996, 10, 940–954.Google Scholar
  10. 10.
    Mangelsdorf, D. J.; Umesono, K.; Kliewer, S. A.; Borgmeyer, U.; Ong, E. S.; Evans, R. M.; A Direct Repeat in the Cellular Retinol-Binding Protein Type-Ii Gene Confers Differential Regulation by RXR and RAR. Cell 1991, 66, 555–561.CrossRefGoogle Scholar
  11. 11.
    Rastinejad, F.; Wagner, T.; Zhao, Q.; Khorasanizadeh, S.; Structure of the RXR-RAR DNA-Binding Complex on the Retinoic Acid Response Element DR1. EMBO J. 2000, 19, 1045–1054.CrossRefGoogle Scholar
  12. 12.
    Zhao, Q.; Chasse, S. A.; Devarakonda, S.; Sierk, M. L.; Ahvazi, B.; Rastinejad, F.; Structural Basis of RXR-DNA Interactions. J. Mol. Biol. 2000, 296, 509–520.CrossRefGoogle Scholar
  13. 13.
    Rochel, N.; Ciesielski, F.; Godet, J.; Moman, E.; Roessle, M.; Peluso-Iltis, C.; Mely, Y.; Svergun, D.; Moras, D. Common Architecture of Nuclear Receptor Heterodimers on DNA Direct Repeats, (submitted 2009) unpublished.Google Scholar
  14. 14.
    Vernet, N.; Dennefeld, C.; Guillou, F.; Chambon, P.; Ghyselinck, N. B.; Mark, M.; Prepubertal Testis Development Relies on Retinoic Acid but Not Rexinoid Receptors in Sertoli Cells. EMBO J. 2006, 25, 5816–5825.CrossRefGoogle Scholar
  15. 15.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M.; Electrospray Ionization for Mass-Spectrometry of Large Biomolecules. Science 1989, 246, 64–71.CrossRefGoogle Scholar
  16. 16.
    Karas, M.; Hillenkamp, F.; Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltons. Anal. Chem. 1988, 60, 2299–2301.CrossRefGoogle Scholar
  17. 17.
    Bolbach, G.; Matrix-Assisted Laser Desorption/Ionization Analysis of Noncovalent Complexes: Fundamentals and Applications. Curr. Pharmaceut. Design. 2005, 11, 2535–2557.CrossRefGoogle Scholar
  18. 18.
    Loo, J. A.; Studying Noncovalent Protein Complexes by Electrospray Ionization Mass Spectrometry. Mass Spectrom. Rev. 1997, 16, 1–23.CrossRefGoogle Scholar
  19. 19.
    Heck, A. J. R.; Native Mass Spectrometry: A Bridge Between Interactomics and Structural Biology. Nat. Methods. 2008, 5, 927–933.CrossRefGoogle Scholar
  20. 20.
    Schleuder, D.; Hillenkamp, F.; Strupat, K.; IR-MALDI-Mass Analysis of Electroblotted Proteins Directly from the Membrane: Comparison of Different Membranes, Application to On-Membrane Digestion and Protein Identification by Database Searching. Anal. Chem. 1999, 71, 3238–3247.CrossRefGoogle Scholar
  21. 21.
    Dreisewerd, K.; Rohlfing, A.; Spottke, B.; Urbanke, C.; Henkel, W.; Characterization of Whole Fibril-Forming Collagen Proteins of Types I, III, and V from Fetal Calf Skin by Infrared Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Anal. Chem. 2004, 76, 3482–3491.CrossRefGoogle Scholar
  22. 22.
    Gross, J.; Strupat, K.; Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Applied to Biological Macromolecules. Trac-Trends Anal. Chem. 1998, 17, 470–484.CrossRefGoogle Scholar
  23. 23.
    Strupat, K.; Sagi, D.; Bonisch, H.; Schafer, G.; Peter-Katalinic, J.; Oligomerization and Substrate Binding Studies of the Adenylate Kinase from Sulfolobus acidocaldarius by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Analyst. 2000, 125, 563–567.CrossRefGoogle Scholar
  24. 24.
    Friess, S. D.; Daniel, J. M.; Zenobi, R.; Probing the Surface Accessibility of Proteins with Noncovalent Receptors and MALDI Mass Spectrometry. Phys. Chem. Chem. Phys. 2004, 6, 2664–2675.CrossRefGoogle Scholar
  25. 25.
    Nazabal, A.; Wenzel, R. J.; Zenobi, R.; Immunoassays with Direct Mass Spectrometric Detection. Anal. Chem. 2006, 78, 3562–3570.CrossRefGoogle Scholar
  26. 26.
    Bich, C.; Scott, M.; Panagiotidis, A.; Wenzel, R. J.; Nazabal, A.; Zenobi, R.; Characterization of Antibody-Antigen Interactions: Comparison Between Surface Plasmon Resonance Measurements and High-Mass Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Biochem. 2008, 375, 35–45.CrossRefGoogle Scholar
  27. 27.
    Riek, U.; Scholz, R.; Konarev, P.; Rufer, A.; Suter, M.; Nazabal, A.; Ringler, P.; Chami, M.; Muller, S. A.; Neumann, D.; Forstner, M.; Hennig, M.; Zenobi, R.; Engel, A.; Svergun, D.; Schlattner, U.; Wallimann, T.; Structural Properties of AMP-Activated Protein Kinase—Dimerization, Molecular Shape, and Changes Upon Ligand Binding. J. Biol. Chem. 2008, 283, 18331–18343.CrossRefGoogle Scholar
  28. 28.
    Akashi, S.; Nagakura, S.; Yamamoto, S.; Okuda, M.; Ohkuma, Y.; Nishimura, Y.; Structural Characterization of Human General Transcription Factor TFIIF in Solution. Protein Sci. 2008, 17, 389–400.CrossRefGoogle Scholar
  29. 29.
    Farmer, T. B.; Caprioli, R. M.; Determination of Protein-Protein Interactions by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. J. Mass Spectrom. 1998, 33, 697–704.CrossRefGoogle Scholar
  30. 30.
    Sinz, A.; Chemical Cross-Linking and Mass Spectrometry for Mapping Three-Dimensional Structures of Proteins and Protein Complexes. J. Mass Spectrom. 2003, 38, 1225–1237.CrossRefGoogle Scholar
  31. 31.
    Sinz, A.; Chemical Cross-Linking and Mass Spectrometry to Map Three-Dimensional Protein Structures and Protein-Protein Interactions. Mass Spectrom. Rev. 2006, 25, 663–682.CrossRefGoogle Scholar
  32. 32.
    Mansuy-Schlick, V.; Delage-Mourroux, R.; Jouvenot, M.; Boireau, W.; Strategy of Macromolecular Grafting onto a Gold Substrate Dedicated to Protein-Protein Interaction Measurements. Biosens. Bioelectron. 2006, 21, 1830–1837.CrossRefGoogle Scholar
  33. 33.
    Zhang, L.; Rayner, S.; Katoku-Kikyo, N.; Romanova, L.; Kikyo, N.; Successful Coimmunoprecipitation of Oct4 and Nanog Using Cross-Linking. Biochem. Biophys. Res. Commun. 2007, 361, 611–614.CrossRefGoogle Scholar
  34. 34.
    Jensen, O. N.; Barofsky, D. F.; Young, M. C.; Vonhippel, P. H.; Swenson, S.; Seifried, S. E.; Direct Observation of UV-Cross-Linked Protein Nucleic-Acid Complexes by Matrix-Assisted Laser-Desorption Ionization Mass-Spectrometry. Rapid Commun. Mass Spectrom. 1993, 7, 496–501.CrossRefGoogle Scholar
  35. 35.
    Ho, D. T.; Sauve, D. M.; Roberge, M.; Detection and Isolation of DNA-Binding Proteins Using Single-Pulse Ultraviolet-Laser Cross-Linking. Anal. Biochem. 1994, 218, 248–254.CrossRefGoogle Scholar
  36. 36.
    Kuhn-Holsken, E.; Dybkov, O.; Sander, B.; Luhrmann, R.; Urlaub, H.; Improved Identification of Enriched Peptide-RNA Cross-Links from Ribonucleoprotein Particles (RNPs) by Mass Spectrometry. Nucleic Acids Res. 2007, 35, e95Google Scholar
  37. 37.
    Klaholz, B. P.; Renaud, J. P.; Mitschler, A.; Zusi, C.; Chambon, P.; Gronemeyer, H.; Moras, D.; Conformational Adaptation of Agonists to the Human Nuclear Receptor RAR γ. Nat. Struct. Biol. 1998, 5, 199–202.CrossRefGoogle Scholar
  38. 38.
    Bovet, C.; Wortmann, A.; Eiler, S.; Granger, F.; Ruff, M.; Gerrits, B.; Moras, D.; Zenobi, R.; Estrogen Receptor-Ligand Complexes Measured by Chip-Based Nanoelectrospray Mass Spectrometry: An Approach for the Screening of Endocrine Disruptors. Protein Sci. 2007, 16, 938–946.CrossRefGoogle Scholar
  39. 39.
    Ashcroft, A. E.; Recent Developments in Electrospray Ionization Mass Spectrometry: Noncovalently Bound Protein Complexes. Nat. Prod. Reports. 2005, 22, 452–464.CrossRefGoogle Scholar
  40. 40.
    Sobott, F.; Hernandez, H.; McCammon, M. G.; Tito, M. A.; Robinson, C. V.; A Tandem Mass Spectrometer for Improved Transmission and Analysis of Large Macromolecular Assemblies. Anal. Chem. 2002, 74, 1402–1407.CrossRefGoogle Scholar
  41. 41.
    Karas, M.; Bahr, U.; Hillenkamp, F.; Uv Laser Matrix Desorption Ionization Mass-Spectrometry of Proteins in the 100,000 Dalton Range. Int. J. Mass Spectrom. Ion Processes. 1989, 92, 231–242.CrossRefGoogle Scholar
  42. 42.
    Sudha, R.; Zenobi, R.; The Detection and Stability of DNA Duplexes Probed by MALDI Mass Spectrometry. Helv. Chim. Acta. 2002, 85, 3136–3143.CrossRefGoogle Scholar
  43. 43.
    Daniel, J. M.; Friess, S. D.; Rajagopalan, S.; Wendt, S.; Zenobi, R.; Quantitative Determination of Noncovalent Binding Interactions Using Soft Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2002, 216, 1–27.CrossRefGoogle Scholar
  44. 44.
    Lin, S. H.; Cotter, R. J.; and Woods, A. S. Detection of Noncovalent Interaction of Single- and Double-Stranded DNA with Peptides by MALDI-TOF. Proteins: Struct. Funct. Genet. 1998, 12–21.Google Scholar
  45. 45.
    Tang, X. D.; Callahan, J. H.; Zhou, P.; Vertes, A.; Noncovalent Protein-Oligonucleotide Interactions Monitored by Matrix-Assisted Laser Desorption/Ionization Mass-Spectrometry. Anal. Chem. 1995, 67, 4542–4548.CrossRefGoogle Scholar
  46. 46.
    Terrier, P.; Tortajada, J.; Zin, G.; Buchmann, W.; Noncovalent Complexes Between DNA and Basic Polypeptides or Polyamines by MALDI-TOF. J. Am. Soc. Mass Spectrom. 2007, 18, 1977–1989.CrossRefGoogle Scholar
  47. 47.
    Cheng, X. H.; Morin, P. E.; Harms, A. C.; Bruce, J. E.; Ben-David, Y.; Smith, R. D.; Mass Spectrometric Characterization of Sequence-Specific Complexes of DNA and Transcription Factor PU 1 DNA Binding Fomain. Anal. Biochem. 1996, 239, 35–40.CrossRefGoogle Scholar
  48. 48.
    Karas, M.; Gluckmann, M.; Schafer, J.; Ionization in Matrix-Assisted Laser Desorption/Ionization: Singly Charged Molecular Ions are the Lucky Survivors. J. Mass Spectrom. 2000, 35, 1–12.CrossRefGoogle Scholar
  49. 49.
    Livadaris, V.; Blais, J. C.; Tabet, J. C.; Formation of Nonspecific Protein Cluster Ions in Matrix-Assisted Laser Desorption/Ionization: Abundances and Dynamical Aspects. Eur. J. Mass Spectrom. 2000, 6, 409–413.CrossRefGoogle Scholar
  50. 50.
    Cohen, L. R. H.; Strupat, K.; Hillenkamp, F.; Analysis of Quaternary Protein Ensembles by Matrix Assisted Laser Desorption/Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 1046–1052.CrossRefGoogle Scholar
  51. 51.
    Perera, I. K.; Allwood, D.; Dyer, P. E.; Oldershaw, G. A.; Observation of Mixed Molecular Cluster Ions in Matrix-Assisted UV Laser-Desorption Ionization of High-Mass Protein Mixtures. Int. J. Mass Spectrom. Ion Processes. 1995, 145, L9-L16.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Claudia Bich
    • 1
  • Cédric Bovet
    • 1
  • Natacha Rochel
    • 2
  • Carole Peluso-Iltis
    • 2
  • Andreas Panagiotidis
    • 3
  • Alexis Nazabal
    • 4
  • Dino Moras
    • 2
  • Renato Zenobi
    • 1
  1. 1.Department of Chemistry and Applied BiosciencesETH ZürichZürichSwitzerland
  2. 2.Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRSIllkirchFrance
  3. 3.Institute of Molecular Systems Biology (IMSB)ETH ZürichZürichSwitzerland
  4. 4.CovalX AGSchlierenSwitzerland

Personalised recommendations