Nonspecific interactions between proteins and charged biomolecules in electrospray ionization mass spectrometry

  • Nian Sun
  • Naoto Soya
  • Elena N. Kitova
  • John S. Klassen
Article

Abstract

An investigation of the nonspecific association of small charged biomolecules and proteins in electrospray ionization mass spectrometry (ES-MS) is described. Aqueous solutions containing pairs of proteins and a small acidic or basic biomolecule that does not interact specifically with either of the proteins were analyzed by ES-MS and the distributions of the biomolecules bound nonspecifically to each pair of proteins compared. For the basic amino acid arginine and the peptide RGVFRR, nonequivalent distributions were measured in positive ion mode, but equivalent distributions were measured in negative ion mode. In the case of uridine 5′-diphosphate, nonequivalent distributions were measured in negative ion mode, but equivalent distributions observed in positive ion mode. The results of dissociation experiments performed on the gaseous ions of the nonspecific complexes suggest that the nonequivalent distributions result from differences in the extent to which the nonspecific complexes undergo in-source dissociation. To test this hypothesis, the distributions of nonspecifically bound basic molecules measured in the presence of imidazole, which protects complexes from in-source dissociation, were compared. In all cases, equivalent distributions were obtained. The results indicate that nonspecific binding of charged molecules to proteins during ES is a statistical process, independent of protein structure and size. However, the kinetic stabilities of the nonspecific interactions are sensitive to the nature of the protein ions. It is concluded that the reference protein method for correcting ES mass spectra for nonspecific ligand-protein binding can be applied to the analysis of ionic ligands, provided that in-source dissociation of the nonspecific interactions is minimized.

References

  1. 1.
    Loo, J. A.; Studying Noncovalent Protein Complexes by Electrospray Ionization Mass Spectrometry. Mass Spectrom. Rev. 1997, 16, 1–23.CrossRefGoogle Scholar
  2. 2.
    Yu, Y. H.; Kirkup, C. E.; Pi, N.; Leary, J. A.; Characterization of Noncovalent Protein-Ligand Complexes and Associated Enzyme Intermediates of GlcNAc-6-O-Sulfotransferase by Electrospray Ionization FT-ICR Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 1400–1407.CrossRefGoogle Scholar
  3. 3.
    Heck van den Heuvel, R. H. H.; Heck, A. J. R.; Investigation of Intact Protein Complexes by Mass Spectrometry. Mass Spectrom. Rev. 2004, 23, 368–389.CrossRefGoogle Scholar
  4. 4.
    Jorgensen, T. J. D.; Roepstorff, P.; Heck, A. J. R.; Direct Determination of Solution Binding Constants for Noncovalent Complexes between Bacterial Cell Wall Peptide Analogues and Vancomycin Group Antibiotics by Electrospray Ionization Mass Spectrometry. Anal. Chem. 1998, 70, 4427–4432.CrossRefGoogle Scholar
  5. 5.
    Daniel, J. M.; Friess, S. D.; Rajagopalan, S.; Wendt, S.; Zenobi, R.; Quantitative Determination of Noncovalent Binding Interactions Using Soft Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2002, 216, 1–27.CrossRefGoogle Scholar
  6. 6.
    Wang, W.; Kitova, E. N.; Klassen, J. S.; Influence of Solution and Gas Phase Processes on Protein-Carbohydrate Binding Affinities Determined by Nanoelectrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2003, 75, 4945–4955.CrossRefGoogle Scholar
  7. 7.
    Gabelica, V.; Galic, N.; Rosu, F.; Houssier, C.; de Pauw, E.; Influence of Response Factors on Determining Equilibrium Association Constants of Noncovalent Complexes by Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2003, 38, 491–501.CrossRefGoogle Scholar
  8. 8.
    Wang, W.; Kitova, E. N.; Klassen, J. S.; Nonspecific Protein-Carbohydrate Complexes Produced by Nanoelectrospray Ionization: Factors Influencing Their Formation and Stability. Anal. Chem. 2005, 77, 3060–3071.CrossRefGoogle Scholar
  9. 9.
    Robinson, C. V.; Chung, E. W.; Kragelund, B. B.; Knudsen, J.; Aplin, R. T.; Poulsen, F. M.; Dobson, C. M.; Probing the Nature of Noncovalent Interactions by Mass Spectrometry: A Study of Protein-CoA Ligand Binding and Assembly. J. Am. Chem. Soc. 1996, 118, 8646–8653.CrossRefGoogle Scholar
  10. 10.
    Clark, S. M.; Konermann, L.; Determination of Ligand-Protein Dissociation Constants by Electrospray Mass Spectrometry-Based Diffusion Measurements. Anal. Chem. 2004, 76, 7077–7083.CrossRefGoogle Scholar
  11. 11.
    Sun, J.; Kitova, E. N.; Klassen, J. S.; Method for Stabilizing Protein-Ligand Complexes in Nanoelectrospray Ionization Mass Spectrometry. Anal. Chem. 2007, 79, 416–425.CrossRefGoogle Scholar
  12. 12.
    Liu, L.; Bagal, D.; Kitova, E. N.; Klassen, J. S.; Hydrophobic Protein-Ligand Interactions Preserved in the Gas Phase. J. Am. Chem. Soc. 2009, 131, 15980–15981.CrossRefGoogle Scholar
  13. 13.
    Xie, Y.; Zhang, J.; Yin, S.; Loo, J. A.; Top-Down ESI-ECD-FT-ICR Mass Spectrometry Localizes Noncovalent Protein-Ligand Binding Sites. J. Am. Chem. Soc. 2006, 128, 14432–14433.CrossRefGoogle Scholar
  14. 14.
    Kitova, E. N.; Seo, M.; Roy, P. N.; Klassen, J. S.; Elucidating the Intermolecular Interactions within A Desolvated Protein-ligand Complex: An Experimental and Computational Study. J. Am. Chem. Soc. 2008, 130, 1214–1226.CrossRefGoogle Scholar
  15. 15.
    Bagal, D.; Kitova, E. N.; Liu, L.; El-Haweit, A.; Schnier, P. D.; Klassen, J. S.; Gas-Phase Stabilization of Noncovalent Protein Complexes Formed by Electrospray Ionization. Anal. Chem. 2009, 81, 7801–7806.CrossRefGoogle Scholar
  16. 16.
    Sun, J.; Kitova, E. N.; Sun, N.; Klassen, J. S.; Method for Identifying Nonspecific Protein-Protein Interactions in Nanoelectrospray Ionization Mass Spectrometry. Anal. Chem. 2007, 79, 8301–8311.CrossRefGoogle Scholar
  17. 17.
    Sun, N.; Sun, J.; Kitova, E. N.; Klassen, J. S.; Identifying Nonspecific Ligand Binding in Electrospray Ionization Mass Spectrometry Using the Reporter Molecule Method. J. Am. Soc. Mass Spectrom. 2009, 20, 1242–1250.CrossRefGoogle Scholar
  18. 18.
    Sun, J.; Kitova, E. N.; Wang, W.; Klassen, J. S.; Method for Distinguishing Specific from Nonspecific Protein-Ligand Complexes in Nanoelectrospray Ionization Mass Spectrometry. Anal. Chem. 2006, 78, 3010–3018.CrossRefGoogle Scholar
  19. 19.
    Shoemaker, G. K.; Soya, N.; Palcic, M. M.; Klassen, J. S.; Temperature-Dependent Cooperativity In Donor—Acceptor Substrate Binding to Human Blood Group Glycosyltransferases. Glycobiology. 2008, 18, 587–592.CrossRefGoogle Scholar
  20. 20.
    Kitova, E. N.; Kitov, P. I.; Paszkiewicz, E.; Kim, J.; Mulvey, G. L.; Armstrong, G. D.; Bundle, D. R.; Klassen, J. S.; Affinities of Shiga Toxins 1 and 2 for Univalent and Oligovalent Pk Trisaccharide Analogs Measured by Electrospray Ionization Mass Spectrometry. Glycobiology. 2007, 17, 1127–1137.CrossRefGoogle Scholar
  21. 21.
    Touboul, D.; Maillard, L.; Grasslin, A.; Moumne, R.; Seitz, M.; Robinson, J.; Zenobi, R.; How to Deal with Weak Interactions in Noncovalent Complexes Analyzed by Electrospray Mass Spectrometry: Cyclopeptidic Inhibitors of the Nuclear Receptor Coactivator 1-STAT6. J. Am. Soc. Mass Spectrom. 2009, 20, 303–311.CrossRefGoogle Scholar
  22. 22.
    Zdanov, A.; Bundle, D. R.; Deng, S.-J.; MacKenzie, C. R.; Narang, S. A.; Young, M. N.; Cygler, M.; Structure of A Single-Chain Antibody Variable Domain (Fv) Fragment Complexed with A Carbohydrate Antigen at 1.7-Å Resolution. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 6423–6427.CrossRefGoogle Scholar
  23. 23.
    Leavell, M. D.; Leary, J. A.; Stabilization and Linkage Analysis of Metal-Ligated Sialic Acid Containing Oligosaccharides. J. Am. Soc. Mass Spectrom. 2001, 12, 528–536.CrossRefGoogle Scholar
  24. 24.
    Verkerk, U. H.; Peschke, M.; Kebarle, P.; Effect of Buffer Cations and of H3O+ on the Charge States of Native Proteins: Significance to Determinations of Stability Constants of Protein Complexes. J. Mass Spectrom. 2003, 38, 618–631.CrossRefGoogle Scholar
  25. 25.
    Dawson, R. M. C.; Elliott, W. H.; Jones, K. M.; Data for Biochemical Research; Clarendon Press: Oxford, 1986; p. 113.Google Scholar
  26. 26.
    Voet, D.; Voet, J. G.; Pratt, C. W. Fundamentals of Biochemistry; John Wiley and Sons, 2002; p. 81.Google Scholar
  27. 27.
    Price, W. D.; Schnier, P. D.; Williams, E. R.; Tandem Mass Spectrometry of Large Biomolecule Ions by Blackbody Infrared Radiative Dissociation. Anal. Chem. 1996, 68, 859–866.CrossRefGoogle Scholar
  28. 28.
    Meot-Ner, M.; The Ionic Hydrogen Bond and Ion Solvation. 1. NH+…O, NH+…N, and OH+…O Bonds: Correlations with Proton Affinity Deviations due to Structural Effects. J. Am. Chem. Soc. 1984, 106, 1257–1264.CrossRefGoogle Scholar
  29. 29.
    Gross, D. S.; Williams, E. R.; Experimental Measurement of Coulomb Energy and Intrinsic Dielectric Polarizability of a Multiply Protonated Peptide Ion Using Electrospray Ionization Fourier-Transform Mass Spectrometry. J. Am. Chem. Soc. 1995, 117, 883–890.CrossRefGoogle Scholar
  30. 30.
    van Dujin, E.; Barendregt, A.; Synowsky, S.; Versluis, C.; Heck, A. J. R.; Chaperonin Complexes Monitored by Ion Mobility Spectrometry. J. Am. Chem. Soc. 2009, 131, 1452–1459.CrossRefGoogle Scholar
  31. 31.
    Hunter, E. P.; Lias, S. G.; Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update. Phys. Chem. Ref. Data. 1998, 27, (3), 413–656.CrossRefGoogle Scholar
  32. 32.
    Wang, W.; Kitova, E. N.; Klassen, J. S.; Blackbody Infrared Radiative Dissociation of Nonspecific Protein-Carbohydrate Complexes Produced by Nanoelectrospray Ionization: The Nature of the Noncovalent Interactions. J. Am. Soc. Mass Spectrom. 2005, 16, 1583–1594.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Nian Sun
    • 1
  • Naoto Soya
    • 1
  • Elena N. Kitova
    • 1
  • John S. Klassen
    • 1
  1. 1.Alberta Ingenuity Centre for Carbohydrate Science and Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations