Evolution of the solvent polarity in an electrospray plume

Article

Abstract

Solvent polarity plays an important role in electrospray ionization-mass spectrometry (ESI-MS), one of the most widely used analytical methods for biochemistry. To have a comprehensive understanding of how solvent polarity affects ESI-MS measurements, we systematically investigated the polarity change in the ESI plume formed from an ethanol solution using laser-induced fluorescence (LIF) spectroscopy. Two solvatochromic dyes (i.e., dyes whose fluorescence emission is sensitive to solvent polarity), Nile red and DCM (4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran), were used as probes. The peak emission wavelengths of these two dyes exhibited significant red shifts (8–12 nm) when the measuring spot was moved away from the spray tip and in radial direction in the plume, indicating a dramatic polarity change during shrinking of the droplets. The emission intensities were also measured with a polarity-insensitive dye as a reference. The results are consistent with the peak wavelength measurements. Two key mechanisms responsible for the change of solvent polarity in the plume were considered, water entrainment from the surrounding air and solvent evaporation. Furthermore, quantitative analysis of the solvent polarity change was performed by using the Lippert-Mataga polarity parameter Δf. The value of Δf reached 0.305–0.307 at the periphery of the ESI plume, which means that the solvent polarity in the smaller droplet is close to that of a mixture of 30% water and 70% ethanol (Δf = 0.307), even though the bulk solvent was ethanol containing less than 1% water as an impurity.

References

  1. 1.
    Nemes, P.; Marginean, I.; Vertes, A. Spraying Mode Effect on Droplet Formation and Ion Chemistry in Electrosprays. Anal. Chem. 2007, 79, 3105–3116.CrossRefGoogle Scholar
  2. 2.
    Marginean, I.; Kelly, R. T.; Prior, D. C.; LaMarche, B. L.; Tang, K. Q.; Smith, R. D. Analytical Characterization of the Electrospray Ion Source in the Nanoflow Regime. Anal. Chem. 2008, 80, 6573–6579.CrossRefGoogle Scholar
  3. 3.
    Enke, C. G. A Predictive Model for Matrix and Analyte Effects in Electrospray Ionization of Singly-Charged Ionic Analytes. Anal. Chem. 1997, 69, 4885–4893.CrossRefGoogle Scholar
  4. 4.
    Zhou, S.; Cook, K. D. A Mechanistic Study of Electrospray Mass Spectrometry: Charge Gradients within Electrospray Droplets and Their Influence on Ion Response. J. Am. Soc. Mass Spectrom. 2001, 12, 206–214.CrossRefGoogle Scholar
  5. 5.
    Boekman, C. F.; Bylund, D.; Markides, K. E.; Sjoberg, J. R. Relating Chromatographic Retention and Electrophoretic Mobility to the Ion Distribution Within Electrosprayed Droplets. J. Am. Soc. Mass Spectrom. 2006, 17, 318–324.CrossRefGoogle Scholar
  6. 6.
    Tang, K.; Smith, R. D. Physical/Chemical Separations in the Break-Up of Highly Charged Droplets from Electrosprays. J. Am. Soc. Mass Spectrom. 2001, 12, 343–347.CrossRefGoogle Scholar
  7. 7.
    Duft, D.; Achtzehn, T.; Mueller, R.; Huber, B. A.; Leisner, T. Coulomb Fission-Rayleigh Jets from Levitated Microdroplets. Nature. 2003, 421, 128.CrossRefGoogle Scholar
  8. 8.
    Cole, R. B. Some Tenets Pertaining to Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2000, 35, 763–772.CrossRefGoogle Scholar
  9. 9.
    Olumee, Z.; Callahan, J. H.; Vertes, A. Droplet Dynamics Changes in Electrostatic Sprays of Methanol-Water Mixtures. J. Phys. Chem. A. 1998, 102, 9154–9160.CrossRefGoogle Scholar
  10. 10.
    Tang, K.; Gomez, A. On the Structure of an Electrostatic Spray of Monodisperse Droplets. Phys. Fluids. 1994, 6, 2317–2332.CrossRefGoogle Scholar
  11. 11.
    Smith, J. N.; Flagan, R. C.; Beauchamp, J. L. Droplet Evaporation and Discharge Dynamics in Electrospray Ionization. J. Phys. Chem. A. 2002, 106, 9957–9967.CrossRefGoogle Scholar
  12. 12.
    Wortmann, A.; Kistler-Momotova, A.; Zenobi, R.; Heine, M. C.; Wilhelm, O.; Pratsinis, S. E. Shrinking Droplets in Electrospray Ionization and Their Influence on Chemical Equilibria. J. Am. Soc. Mass Spectrom. 2007, 18, 385–393.CrossRefGoogle Scholar
  13. 13.
    Wang, H.; Agnes, G. R. Kinetically Labile Equilibrium Shifts Induced by the Electrospray Process. Anal. Chem. 1999, 71, 4166–4172.CrossRefGoogle Scholar
  14. 14.
    Wang, H.; Agnes, G. R. Evaluation of Electrospray Mass Spectrometry as a Technique for Quantitative Analysis of Kinetically Labile Solution Species. Anal. Chem. 1999, 71, 3785–3792.CrossRefGoogle Scholar
  15. 15.
    Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B. Molecular Beams of Macroions. J. Chem. Phys. 1968, 49, 2240–2249.CrossRefGoogle Scholar
  16. 16.
    Iribarne, J. V.; Thomson, B. A. On the Evaporation of Small Ions from Charged Droplets. J. Chem. Phys. 1976, 64, 2287–2294.CrossRefGoogle Scholar
  17. 17.
    Kebarle, P. A Brief Overview of the Present Status of the Mechanisms Involved in Electrospray Mass Spectrometry. J. Mass Spectrom. 2000, 35, 804–817.CrossRefGoogle Scholar
  18. 18.
    Kebarle, P.; Tang, L. From Ions in Solution to Ions in the Gas Phase—the Mechanism of Electrospray Mass-Spectrometry. Anal. Chem. 1993, 65, A972-A986.Google Scholar
  19. 19.
    Nguyen, S.; Fenn, J. B. Gas-Phase Ions of Solute Species from Charged Droplets of Solutions. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 1111–1117.CrossRefGoogle Scholar
  20. 20.
    Tang, L.; Kebarle, P. Dependence of Ion Intensity in Electrospray Mass-Spectrometry on the Concentration of the Analytes in the Electrosprayed Solution. Anal. Chem. 1993, 65, 3654–3668.CrossRefGoogle Scholar
  21. 21.
    Illuminati, G. Solvent Effects on Selected Organic and Organometallic Reactions: Guidelines to Synthetic Applications. In Techniques of Chemistry; Dack, M. R. J., Ed.; Chap XII. Series: Solutions and Solubilities Part II; J. Wiley and Sons: London, 1976; p. 159.Google Scholar
  22. 22.
    Engberts, J. B. F. N. Mixed Aqueous Solvent Effects on Kinetics and Mechanisms of Organic Reactions. In Water: A Comprehensive Treatise; Franks, F., Ed.; Vol. VI; Chap IV; Series: Recent Advances; Plenum Press: New York, 1979; p. 139.CrossRefGoogle Scholar
  23. 23.
    Reichardt, C. Solvents and Solvent Effects in Organic Chemistry; 3rd ed.; Wiley-VCH: Weinhem, 93.Google Scholar
  24. 24.
    Sekiguchi, Y.; Takayama, S.; Gotanda, T.; Sano, K. Importance of Solvent Polarity in the Equilibrium Reaction of Leuco Dye and Developer. Chem. Lett. 2006, 35, 458–459.CrossRefGoogle Scholar
  25. 25.
    Fabris, D. Mass Spectrometric Approaches for the Investigation of Dynamic Processes in Condensed Phase. Mass Spectrom. Rev. 2005, 24, 30–54.CrossRefGoogle Scholar
  26. 26.
    Marquez, C. A.; Wang, H. Y.; Fabbretti, F.; Metzger, J. O. Electron-Transfer-Catalyzed Dimerization of Trans-Anethole: Detection of the Distonic Tetramethylene Radical Cation Intermediate by Extractive Electrospray Ionization Mass Spectrometry. J. Am. Chem. Soc. 2008, 130, 17208–17209.CrossRefGoogle Scholar
  27. 27.
    Zhu, L.; Gamez, G.; Chen, H. W.; Huang, H. X.; Chingin, K.; Zenobi, R. Real-Time, On-Line Monitoring of Organic Chemical Reactions Using Extractive Electrospray Ionization Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 2993–2998.CrossRefGoogle Scholar
  28. 28.
    Cole, R. B.; Harrata, A. K. Solvent Effect on Analyte Charge-State, Signal Intensity, and Stability in Negative-Ion Electrospray Mass-Spectrometry—Implications for the Mechanism of Negative-Ion Formation. J. Am. Soc. Mass Spectrom. 1993, 4, 546–556.CrossRefGoogle Scholar
  29. 29.
    Wang, G.; Cole, R. B. Effects of Solvent and Counterion on Ion Pairing and Observed Charge States of Diquaternary Ammonium Salts in Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1996, 7, 1050–1058.CrossRefGoogle Scholar
  30. 30.
    Lampa-Pastirk, S.; Beck, W. F. Intramolecular Vibrational Preparation of the Unfolding Transition State of ZnII-Substituted Cytochrome C. J. Phys. Chem. B. 2006, 110, 22971–22974.CrossRefGoogle Scholar
  31. 31.
    Gupta, M. N.; Batra, R.; Tyagi, R.; Sharma, A. Polarity Index: The Guiding Solvent Parameter for Enzyme Stability in Aqueous-Organic Cosolvent Mixtures. Biotechnol. Prog. 1997, 13, 284–288.CrossRefGoogle Scholar
  32. 32.
    Griffith, O. H.; Dehlinger, P. J.; Van, S. P. Shape of Hydrophobic Barrier of Phospholipid Bilayers (Evidence for Water Penetration in Biological-Membranes). J. Membr. Biol. 1974, 15, 159–192.CrossRefGoogle Scholar
  33. 33.
    Zhou, S.; Cook, K. D. Probing Solvent Fractionation in Electrospray Droplets with Laser-Induced Fluorescence of a Solvatochromic Dye. Anal. Chem. 2000, 72, 963–969.CrossRefGoogle Scholar
  34. 34.
    Mataga, N.; Kaifu, Y.; Koizumi, M. Solvent Effects Upon Fluorescence Spectra and the Dipole Moments of Excited Molecules. Bull. Chem. Soc. Jpn. 1956, 29, 465–470.CrossRefGoogle Scholar
  35. 35.
    Lippert, V. Z. Dipole Moment and Electronic Structure of Excited Molecules. Z. Naturforsche. 1957, 10a, 541–545.Google Scholar
  36. 36.
    Kosower, E. M. The Effect of Solvent on Spectra I: A New Empirical Measure of Solvent Polarity-Z-Values. J. Am. Chem. Soc. 1958, 80, 3253–3260.CrossRefGoogle Scholar
  37. 37.
    Sarkar, N.; Das, K.; Nath, D. N.; Bhattacharyya, K. Twisted Charge-Transfer Process of Nile Red in Homogeneous Solutions and in Faujasite Zeolite. Langmuir. 1994, 10, 326–329.CrossRefGoogle Scholar
  38. 38.
    Bondarev, S. L.; Knyukshto, V. N.; Stepuro, V. I.; Stupak, A. P.; Turban, A. A. Fluorescence and Electronic Structure of the Laser Dye DCM in Solutions and in Polymethylmethacrylate. J. Appl. Spectrosc. 2004, 71, 194–201.CrossRefGoogle Scholar
  39. 39.
    Lin, C. T.; Mahloudji, A. M.; Li, L.; Hsiao, M. W. Molecular Aggregation of Rhodamine 6g Probed by Optical and Electrochemical Techniques. Chem. Phys. Lett. 1992, 193, 8–16.CrossRefGoogle Scholar
  40. 40.
    Peng, X.; Draney, D. R.; Volcheck, W. M.; Bashford, G. R.; Lamb, D. T.; Grone, D. L.; Zhang, Y.; Johnson, C. M. Phthalocyanine Dye as an Extremely Photostable and Highly Fluorescent Near-Infrared Labeling Reagent. Proceedings of the Conference on Optical Molecular Probes for Biomedical Applications; Achilefu, S., Bornhop, D. J., Raghavachari, R., Eds.; Spie-Int Soc Optical Engineering, San Jose, CA, 2006.Google Scholar
  41. 41.
    Magde, D.; Rojas, G. E.; Seybold, P. G. Solvent Dependence of the Fluorescence Lifetimes of Xanthene Dyes. Photochem. Photobiol. 1999, 70, 737–744.CrossRefGoogle Scholar
  42. 42.
    Magde, D.; Wong, R.; Seybold, P. G. Fluorescence Quantum Yields and Their Relation to Lifetimes of Rhodamine 6g and Fluorescein in Nine Solvents: Improved Absolute Standards for Quantum Yields. Photochem. Photobiol. 2002, 75, 327–334.CrossRefGoogle Scholar
  43. 43.
    Lakowicz, J. R. Principles of Fluorescence Spectroscopy 3rd ed. Springer: Berlin, 2006; pp 206–209.CrossRefGoogle Scholar
  44. 44.
    Selwyn, J. E.; Steinfeld, J. I. Aggregation Equilibria of Xanthene Dyes. J. Phys. Chem. 1972, 76, 762–774.CrossRefGoogle Scholar
  45. 45.
    Basting, D.; Ouw, D.; Schafer, F. P. The Phenoxazones: A New Class of Laser Dyes. Opt. Commun. 1976, 18, 260–262.CrossRefGoogle Scholar
  46. 46.
    Satpati, A.; Senthilkumar, S.; Kumbhakar, M.; Nath, S.; Maity, D. K.; Pal, H. Investigations of the Solvent Polarity Effect on the Photophysical Properties of Coumarin-7 Dye. Photochem. Photobiol. 2005, 81, 270–278.CrossRefGoogle Scholar
  47. 47.
    Pemberton, R. C.; Mash, C. J. Thermodynamic Properties of Aqueous Non-Electrolyte Mixtures, I. I. Vapor Pressures and Excess Gibbs Energies for Water + Ethanol at 303.15 to 363.15 K Determined by an Accurate Static Method. J. Chem. Thermodynamics. 1978, 10, 867–888.CrossRefGoogle Scholar
  48. 48.
    Innocenzi, P.; Malfatti, L.; Costacurta, S.; Kidchob, T.; Piccinini, M.; Marcelli, A. Evaporation of Ethanol and Ethanol-Water Mixtures Studied by Time-Resolved Infrared Spectroscopy. J. Phys. Chem. A. 2008, 112, 6512–6516.CrossRefGoogle Scholar
  49. 49.
    Katta, V.; Chait, B. T. Hydrogen/Deuterium Exchange Electrospray Ionization Mass Spectrometry: A Method for Probing Protein Conformational Changes in Solution. J. Am. Chem. Soc. 1993, 115, 6317–6321.CrossRefGoogle Scholar
  50. 50.
    Samuel, F. W.; Agnes, G. R. Study of Chemistry in Droplets with Net Charge Before and After Coulomb Explosion: Ion-Induced Nucleation in Solution and Implications for Ion Production in an Electrospray. Anal. Chem. 2005, 77, 3189–3197.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  1. 1.Department of Chemistry and Applied BiosciencesETH HonggerbergZurichSwitzerland

Personalised recommendations