Ambient analysis of saturated hydrocarbons using discharge-induced oxidation in desorption electrospray ionization

  • Chunping Wu
  • Kuangnan Qian
  • Marcela Nefliu
  • R. Graham Cooks
Article

Abstract

Saturated nonfunctionalized hydrocarbons can be oxidized in situ by initiating an electrical discharge during desorption electrospray ionization (DESI) to generate the corresponding alchohols and ketones. This form of reactive DESI experiment can be utilized as an in situ derivatization method for rapid and direct analysis of alkanes at atmospheric pressure without sample preparation. Betaine aldehyde was incorporated into the DESI spray solution to improve the sensitivity of detecting the long-chain alcohol oxidation products. The limit of detection for alkanes (C15H32 to C30H62) from pure samples is ∼20 ng. Multiple oxidations and dehydrogenations occurred during the DESI discharge, but no hydrocarbon fragmentation was observed, even for highly branched squalane. Using exact mass measurements, the technique was successfully implemented for analysis of petroleum distillates containing saturated hydrocarbons.

Supplementary material

13361_2011_210200261_MOESM1_ESM.doc (652 kb)
Supplementary material, approximately 667 KB.

Supplementary material, approximately 4967 KB.

References

  1. 1.
    Crawford, K. E.; Campbell, J. L.; Fiddler, M. N.; Duan, P.; Qian, K.; Gorbaty, M. L.; Kenttamaa, H. I. Laser-Induced Acoustic Desorption/Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Petroleum Distillate Analysis. Anal. Chem. 2005, 77, 7916–7923.CrossRefGoogle Scholar
  2. 2.
    Liang, Z.; Hsu, C. S. Molecular Speciation of Saturates by On-Line Liquid Chromatography-Field Ionization Mass Spectrometry. Energy Fuels. 1998, 12, 637–643.CrossRefGoogle Scholar
  3. 3.
    Gross, J. H.; Vékey, K.; Dallos, A. Field Desorption Mass Spectrometry of Large Multiply Branched Saturated Hydrocarbons. J. Mass Spectrom. 2001, 36, 522–528.CrossRefGoogle Scholar
  4. 4.
    Purcell, J. M.; Hendrickson, C. L.; Rodgers, R. P.; Marshall, A. G. Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Complex Mixture Analysis. Anal. Chem. 2006, 78, 5906–5912.CrossRefGoogle Scholar
  5. 5.
    Duan, P. G.; Fu, M. K.; Pinkston, D. S.; Habicht, S. C.; Kenttamaa, H. I. Gas-Phase Reactions of ClMn(H2O)+ with Polar and Nonpolar Hydrocarbons in a Mass Spectrometer. JACS. 2007, 129, 9266–9267.CrossRefGoogle Scholar
  6. 6.
    Nefliu, M.; Smith, J. N.; Venter, A.; Cooks, R. G. Internal Energy Distributions in Desorption Electrospray Ionization (DESI). J. Am. Soc. Mass Spectrom. 2008, 19, 420–427.CrossRefGoogle Scholar
  7. 7.
    Benassi, M.; Wu, C.; Nefliu, M.; Ifa, D. R.; Volný, M.; Cooks, R. G. Redox Transformations in Desorption Electrospray Ionization. Int. J. Mass Spectrom. 2009, 280, 235–240.CrossRefGoogle Scholar
  8. 8.
    Pasilis, S. P.; Kertesz, V.; Van Berkel, G. J. Unexpected Analyte Oxidation During Desorption Electrospray Ionization-Mass Spectrometry. Anal. Chem. 2008, 80, 1208–1214.CrossRefGoogle Scholar
  9. 9.
    Chen, M. L.; Cook, K. D. Oxidation Artifacts in the Electrospray Mass Spectrometry of a β Peptide. Anal. Chem. 2007, 79, 2031–2036.CrossRefGoogle Scholar
  10. 10.
    Boys, B. L.; Kuprowski, M. C.; Noel, J. J.; Konermann, L. Protein Oxidative Modifications During Electrospray Ionization: Solution Phase Electrochemistry or Corona Discharge-Induced Radical Attack? Anal. Chem. 2009, 81, 4027–4034.CrossRefGoogle Scholar
  11. 11.
    Wong, J. W. H.; Maleknia, S. D.; Downard, K. M. Study of the Ribonuclease-S-Protein-Peptide Complex Using a Radical Probe and Electrospray Ionization Mass Spectrometry. Anal. Chem. 2003, 75, 1557–1563.CrossRefGoogle Scholar
  12. 12.
    Wu, C.; Ifa, D. R.; Manicke, N. E.; Cooks, R. G. Rapid, Direct Analysis of Cholesterol by Charge Labeling in Reactive Desorption Electrospray Ionization. Anal. Chem. 2009, 81, 7618–7624.CrossRefGoogle Scholar
  13. 13.
    Nyadong, L.; Hohenstein, E. G.; Galhena, A.; Lane, A. L.; Kubanek, J.; Sherrill, C. D.; Fernandez, F. M. Reactive Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) of Natural Products of a Marine Alga. Anal. Bioanal. Chem. 2009, 394, 245–254.CrossRefGoogle Scholar
  14. 14.
    Qian, K. N.; Dechert, G. J. Recent Advances in Petroleum Characterization by GC Field Ionization Time-of-Flight High-Resolution Mass Spectrometry. Anal. Chem. 2002, 74, 3977–3983.CrossRefGoogle Scholar
  15. 15.
    Morand, K.; Talbo, G.; Mann, M. Oxidation of Peptides During Electrospray Ionization. Rapid Commun. Mass Spectrom. 1993, 7, 738–743.CrossRefGoogle Scholar
  16. 16.
    Klesper, G.; Rollgen, F. W. Field-Induced Ion Chemistry Leading to the Formation of (M − 2nH)+• and (2M − 2mH)+• Ions in Field Desorption Mass Spectrometry of Saturated Hydrocarbons. J. Mass Spectrom. 1996, 31, 383–388.CrossRefGoogle Scholar
  17. 17.
    Ascenzi, D.; Franceschi, P.; Guella, G.; Tosi, P. Phenol Production in Benzene/Air Plasmas at Atmospheric Pressure: Role of Radical and Ionic Routes. J. Phys. Chem. A. 2006, 110, 7841–7847.CrossRefGoogle Scholar
  18. 18.
    Xu, G.; Chance, M. R. Hydroxyl Radical-Mediated Modification of Proteins as Probes for Structural Proteomics. Chem. Rev. 2007, 107, 3514–3543.CrossRefGoogle Scholar
  19. 19.
    Kudryashov, S. V.; Shchegoleva, G. S.; Sirotkina, E. E.; Ryabov, A. Y. Oxidation of Hydrocarbons in a Barrier Discharge Reactor. High Energ. Chem. 2000, 34, 112–115.CrossRefGoogle Scholar
  20. 20.
    Marshall, A. G.; Rodgers, R. P. Petroleomics: Chemistry of the Underworld. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 18090–18095.CrossRefGoogle Scholar
  21. 21.
    Huang, G.; Chen, H.; Zhang, X.; Cooks, R. G.; Ouyang, Z. Rapid Screening of Anabolic Steroids in Urine by Reactive Desorption Electrospray Ionization. Anal. Chem. 2007, 79, 8327–8332.CrossRefGoogle Scholar
  22. 22.
    Nyadong, L.; Late, S.; Green, M. D.; Banga, A.; Fernandez, F. M. Direct Quantitation of Active Ingredients in Solid Artesunate Antimalarials by Noncovalent Complex Forming Reactive Desorption Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19, 380–388.CrossRefGoogle Scholar
  23. 23.
    Vanberkel, G. J.; McLuckey, S. A.; Glish, G. L. Electrochemical Origin of Radical Cations Observed in Electrospray Ionization Mass Spectra. Anal. Chem. 1992, 64, 1586–1593.CrossRefGoogle Scholar
  24. 24.
    Zhang, J.; Frankevich, V.; Knochenmuss, R.; Friess, S. D.; Zenobi, R. Reduction of Cu(II) in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2003, 14, 42–50.CrossRefGoogle Scholar
  25. 25.
    Pelzer, G.; Depauw, E.; Dung, D. V.; Marien, J. Oxidation-Reduction Processes Occurring in Secondary Ion Mass Spectrometry and Fast Atom Bombardment of Glycerol Solutions. J. Phys. Chem. 1984, 88, 5065–5068.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Chunping Wu
    • 1
  • Kuangnan Qian
    • 2
  • Marcela Nefliu
    • 1
  • R. Graham Cooks
    • 1
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.ExxonMobil Research and Engineering CompanyAnnandaleUSA
  3. 3.Merck & Co., Inc.West PointUSA

Personalised recommendations