Fragmentation of benzylpyridinium “thermometer” ions and its effect on the accuracy of internal energy calibration

  • Konstantin V. Barylyuk
  • Konstantin Chingin
  • Roman M. Balabin
  • Renato ZenobiEmail author


Electrospray ionization mass spectrometry (ESI-MS) is a powerful analytical method to study biomolecules and noncovalent complexes. The prerequisite for their intact observation is soft ionization. In ESI, the internal energy of ions is primarily influenced by collisional activation in the source. The survival yield method is frequently used to probe the energy deposition in ions during the electrospray process. In the present work, we investigate the fragmentation pathways of para-substituted benzylpyridinium ions, the most widely used “thermometer ions” in the survival yield method. In addition to the C-N bond cleavage, alternative fragmentation channels were found for the compounds studied. We consider these pathways to result from intramolecular rearrangements. The effect of these additional fragments on the accuracy of the internal energy calibration is estimated for both collision-cell and in-source collision-induced dissociation (CID). Altogether, results presented suggest that a correction of the energy scale is necessary for the method based on benzylpyridinium ions to precisely quantify ion internal energies.


Internal Energy Collisional Activation Additional Fragment Internal Energy Distribution Survival Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass-Spectrometry of Large Biomolecules. Science 1989, 246, 64–71.CrossRefGoogle Scholar
  2. 2.
    Rosenberg, E. The Potential of Organic (Electrospray- and Atmospheric Pressure Chemical Ionization) Mass Spectrometric Techniques Coupled to Liquid-Phase Separation for Speciation Analysis. J. Chromatogr. A 2003, 1000, 841–889.CrossRefGoogle Scholar
  3. 3.
    van den Heuvel, R. H.; Heck, A. J. R. Native Protein Mass Spectrometry: From Intact Oligomers to Functional Machineries. Curr. Opin. Chem. Biol. 2004, 8, 519–526.CrossRefGoogle Scholar
  4. 4.
    Shukla, A. K.; Futrell, J. H. Tandem Mass Spectrometry: Dissociation of Ions by Collisional Activation. J. Mass Spectrom. 2000, 35, 1069–1090.CrossRefGoogle Scholar
  5. 5.
    Gabelica, V.; De Pauw, E. Internal Energy and Fragmentation of Ions Produced in Electrospray Sources. Mass Spectrom. Rev. 2005, 24, 566–587.CrossRefGoogle Scholar
  6. 6.
    Kenttamaa, H. I.; Cooks, R. G. Internal Energy-Distributions Acquired through Collisional Activation at Low and High-Energies. Int. J. Mass Spectrom. Ion Processes. 1985, 64, 79–83.CrossRefGoogle Scholar
  7. 7.
    Wysocki, V. H.; Kenttamaa, H. I.; Cooks, R. G. Internal Energy-Distributions of Isolated Ions after Activation by Various Methods. Int. J. Mass Spectrom. Ion Processes. 1987, 75, 181–208.CrossRefGoogle Scholar
  8. 8.
    Collette, C.; De Pauw, E. Calibration of the Internal Energy Distribution of Ions Produced by Electrospray. Rapid Commun. Mass Spectrom. 1998, 12, 165–170.CrossRefGoogle Scholar
  9. 9.
    Naban-Maillet, J.; Lesage, D.; Bossee, A.; Glimbert, Y.; Sztaray, J.; Vekey, K.; Tabet, J. C. Internal Energy Distribution in Electrospray Ionization. J. Mass Spectrom. 2005, 40, 1–8.CrossRefGoogle Scholar
  10. 10.
    Voyksner, R. D.; Pack, T. Investigation of Collisional-Activation Decomposition Process and Spectra in the Transport Region of an Electrospray Single-Quadrupole Mass Spectrometer. Rapid Commun. Mass Spectrom. 1991, 5, 263–268.CrossRefGoogle Scholar
  11. 11.
    Derwa, F.; de Pauw, E.; Natalis, P. New Basis for a Method for the Estimation of Secondary Ion Internal Energy Distribution In “Soft” Ionization Techniques. Org. Mass Spectrom. 1991, 26, 117–118.CrossRefGoogle Scholar
  12. 12.
    Touboul, D.; Jecklin, M. C.; Zenobi, R. Ion Internal Energy Distributions Validate the Charge Residue Model for Small Molecule Ion Formation by Spray Methods. Rapid Commun. Mass Spectrom. 2008, 22, 1062–1068.CrossRefGoogle Scholar
  13. 13.
    Lecchi, P.; Zhao, J. H.; Wiggins, W. S.; Chen, T. H.; Yip, P. F.; Mansfield, B. C.; Peltier, J. M. A Method for Monitoring and Controlling Reproducibility of Intensity Data in Complex Electrospray Mass Spectra: A Thermometer Ion-Based Strategy. J. Am. Soc. Mass Spectrom. 2009, 20, 398–410.CrossRefGoogle Scholar
  14. 14.
    Nefliu, M.; Smith, J. N.; Venter, A.; Cooks, R. G. Internal Energy Distributions in Desorption Electrospray Ionization (DESI). J. Am. Soc. Mass Spectrom. 2008, 19, 420–427.CrossRefGoogle Scholar
  15. 15.
    Greisch, J. F.; Gabelica, V.; Remacle, F.; De Pauw, E. Thermometer Ions for Matrix-Enhanced Laser Desorption/Ionization Internal Energy Calibration. Rapid Commun. Mass Spectrom. 2003, 17, 1847–1854.CrossRefGoogle Scholar
  16. 16.
    Gabelica, V.; Lemaire, D.; Laprevote, O.; De Pauw, E. Kinetics of Solvent Addition on Electrosprayed Ions in an Electrospray Source and in a Quadrupole Ion Trap. Int. J. Mass Spectrom. 2001, 210, 113–119.CrossRefGoogle Scholar
  17. 17.
    Zins, E. L.; Pepe, C.; Rondeau, D.; Rochut, S.; Galland, N.; Tabet, J. C. Theoretical and Experimental Study of Tropylium Formation from Substituted Benzylpyridinium Species. J. Mass Spectrom. 2009, 44, 12–17.CrossRefGoogle Scholar
  18. 18.
    Katritzky, A. R.; Watson, C. H.; Degaszafran, Z.; Eyler, J. R. Kinetics and Mechanism of Nucleophilic Displacements with Heterocycles as Leaving Groups. 26: Collisionally Activated Dissociation of N-Alkylpyridinium Cations to Pyridine and Alkyl Cations in the Gas-Phase. J. Am. Chem. Soc. 1990, 112, 2471–2478.CrossRefGoogle Scholar
  19. 19.
    Moonen, F.; Collette, C.; De Pauw, E. On the Determination of the Ion Internal Energy in an Electrospray Source. In NATO Advanced Research Workshop on New Methods for the Study of Molecular Aggregates, Springer: Kananaskis, Canada, 2006.Google Scholar
  20. 20.
    Gauthier, J. W.; Trautman, T. R.; Jacobson, D. B. Sustained Off-Resonance Irradiation for Collision-Activated Dissociation Involving Fourier-Transform Mass Spectrometry-Collision-Activated Dissociation Technique That Emulates Infrared Multiphoton Dissociation. Anal. Chim. Acta. 1991, 246, 211–225.CrossRefGoogle Scholar
  21. 21.
    Laskin, J.; Futrell, J. H. Activation of Large Ions in FT-ICR Mass Spectrometry. Mass Spectrom. Rev. 2005, 24, 135–167.CrossRefGoogle Scholar
  22. 22.
    Gabelica, V.; Schulz, E.; Karas, M. Internal Energy Build-Up in Matrix-Assisted Laser Desorption/Ionization. J. Mass Spectrom. 2004, 39, 579–593.CrossRefGoogle Scholar
  23. 23.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Rev. D.01. Gaussian, Inc., Wallingford CT, 2004.Google Scholar
  24. 24.
    Riley, K. E.; Op’t Holt, B. T.; Merz, K. M. Critical Assessment of the Performance of Density Functional Methods for Several Atomic and Molecular Properties. J. Chem. Theory Computut. 2007, 3, 407–433.CrossRefGoogle Scholar
  25. 25.
    Balabin, R. M. Enthalpy Difference Between Conformations of Normal Alkanes: Intramolecular Basis Set Superposition Error (BSSE) in the Case of N-Butane and N-Hexane. J. Chem. Phys. 2008, 129, 164101–164105.CrossRefGoogle Scholar
  26. 26.
    Troe, J. Theory of Thermal Unimolecular Reactions at Low-Pressures. 1: Solutions of Master Equation. J. Chem. Phys. 1977, 66, 4745–4757.CrossRefGoogle Scholar
  27. 27.
    Miller, J. A.; Klippenstein, S. J. Master Equation Methods in Gas Phase Chemical Kinetics. J. Phys. Chem. A. 2006, 110, 10528–10544.CrossRefGoogle Scholar
  28. 28.
    Drahos, L.; Vekey, K. Masskinetics: A Theoretical Model of Mass Spectra Incorporating Physical Processes, Reaction Kinetics and Mathematical Descriptions. J. Mass Spectrom. 2001, 36, 237–263.CrossRefGoogle Scholar
  29. 29.
    Gabelica, V.; De Pauw, E.; Karas, M. Influence of the Capillary Temperature and the Source Pressure on the Internal Energy Distribution of Electrosprayed Ions. Int. J. Mass Spectrom. 2004, 231, 189–195.CrossRefGoogle Scholar
  30. 30.
    Guo, X. H.; Bruins, A. P.; Covey, T. R. Characterization of Typical Chemical Background Interferences in Atmospheric Pressure Ionization Liquid Chromatography-Mass Spectrometry. Proceedings of the 53rd Annual Conference of the ASMS Conference; 2005. San Antonio, TX, June, 2005.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Konstantin V. Barylyuk
    • 1
  • Konstantin Chingin
    • 1
  • Roman M. Balabin
    • 1
  • Renato Zenobi
    • 1
    Email author
  1. 1.Department of Chemistry and Applied BiosciencesETH Zürich, ETH HönggerbergZürichSwitzerland

Personalised recommendations