Cerebral bioimaging of Cu, Fe, Zn, and Mn in the MPTP mouse model of Parkinson’s disease using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)

  • Andreas Matusch
  • Candan Depboylu
  • Christoph Palm
  • Bei Wu
  • Günter U. Höglinger
  • Martin K. -H. Schäfer
  • J. Sabine Becker


Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a powerful technique for the determination of metal and nonmetal distributions within biological systems with high sensitivity. An imaging LA-ICP-MS technique for Fe, Cu, Zn, and Mn was developed to produce large series of quantitative element maps in native brain sections of mice subchronically intoxicated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP) as a model of Parkinson’s disease. Images were calibrated using matrix-matched laboratory standards. A software solution allowing a precise delineation of anatomical structures was implemented. Coronal brain sections were analyzed crossing the striatum and the substantia nigra, respectively. Animals sacrificed 2 h, 7 d, or 28 d after the last MPTP injection and controls were investigated.

We observed significant decreases of Cu concentrations in the periventricular zone and the fascia dentata at 2 h and 7d and a recovery or overcompensation at 28 d, most pronounced in the rostral periventricular zone (+40%). In the cortex Cu decreased slightly to −10%. Fe increased in the interpeduncular nucleus (+40%) but not in the substantia nigra. This pattern is in line with a differential regulation of periventricular and parenchymal Cu, and with the histochemical localization of Fe, and congruent to regions of preferential MPTP binding described in the rodent brain.

The LA-ICP-MS technique yielded valid and statistically robust results in the present study on 39 slices from 19 animals. Our findings underline the value of routine micro-local analytical techniques in the life sciences and affirm a role of Cu availability in Parkinson’s disease.


Inductively Couple Plasma Mass Spectrometry Substantia Nigra MPTP Laser Ablation Inductively Couple Plasma Mass Spectrometry MPTP Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sigel, A.; Sigel, H.; Sigel, R. K.; Eds. Neurodegenerative Diseases and Metal Ions; John Wiley and Sons: Chichester, 2006; pp 1–435.CrossRefGoogle Scholar
  2. 2.
    Qureshi, G. A.; Syed, S. A.; Parvez, S. H. Role of Selenium, Iron, Copper, and Zinc. In Oxidative Stress and Neurodegenerative Disorders; Qureshi, G. A.; Parvez, S. H., Eds. Elsevier: 2007; 709.Google Scholar
  3. 3.
    Hutchinson, R. W.; Cox, A. G.; McLeod, C. W.; Marshall, P. S.; Harper, A.; Dawson, E. L.; Howlett, D. R. Imaging and Spatial Distribution of β-Amyloid Peptide and Metal Ions in Alzheimer’s Plaques by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Anal. Biochem. 2005, 346, 225–233.CrossRefGoogle Scholar
  4. 4.
    Faucheux, B. A.; Martin, M. E.; Beaumont, C.; Hauw, J. J.; Agid, Y.; Hirsch, E. C. Neuromelanin Associated Redox-Active Iron Is Increased in the Substantia Nigra of Patients with Parkinson’s Disease. J. Neurochem. 2003, 86, 1142–1148.CrossRefGoogle Scholar
  5. 5.
    Berg, D.; Youdim, M. B.; Riederer, P. Redox Imbalance. Cell Tissue Res. 2004, 318, 201–213.CrossRefGoogle Scholar
  6. 6.
    Olanow, C. W.; Good, P. F.; Shinotoh, H.; Hewitt, K. A.; Vingerhoets, F.; Snow, B. J.; Beal, M. F.; Calne, D. B.; Perl, D. P. Manganese Intoxication in the Rhesus Monkey: A Clinical Imaging, Pathologic, and Biochemical study. Neurology. 1996, 46, 492–498.CrossRefGoogle Scholar
  7. 7.
    Hill, J. M.; Switzer, R. C. III. The Regional Distribution and Cellular Localization of Iron in the Rat Brain. Neuroscience. 1984, 11, 595–603.CrossRefGoogle Scholar
  8. 8.
    Popescu, B.; George, M.; Bergmann, U.; Garachtchenko, A.; Kelly, M.; McCrea, R.; Lüning, K.; Devon, R.; George, G.; Hanson, A.; Harder, S.; Chapman, L.; Pickering, I.; Nichol, H. Mapping Metals in Parkinson’s and Normal Brain Using Rapid-Scanning X-ray Fluorescence. Phys. Med. Biol. 2009, 54, 651–663.CrossRefGoogle Scholar
  9. 9.
    Chwiej, J.; Fik-Mazgaj, K.; Szczerbowska-Boruchowska, M.; Lankosz, M.; Ostachowicz, J.; Adamek, D.; Simionovici, A.; Bohic, S. Classification of Nerve Cells from Substantia Nigra of Patients with Parkinson’s Disease and Amyotrophic Lateral Sclerosis with the Use of X-ray Fluorescence Microscopy and Multivariate Methods. Anal. Chem. 2005, 77, 2895–2900.CrossRefGoogle Scholar
  10. 10.
    Ektessabi, A.; Yoshida, S.; Takada, K. Distribution of Iron in a Single Neuron of Patients with Parkinson’s Disease. X-Ray Spectrom. 1999, 28, 456–460.CrossRefGoogle Scholar
  11. 11.
    Becker, J. S. Inorganic Mass Spectrometry: Principles and Applications; John Wiley and Sons: Chichester, 2007; pp 317–380.CrossRefGoogle Scholar
  12. 12.
    Becker, J. S.; Zoriy, M. V.; Pickhardt, C.; Palomero-Gallagher, N.; Zilles, K. Imaging of Copper, Zinc, and Other Elements in Thin Section of Human Brain Samples (Hippocampus) by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2005, 77, 3208–3216.CrossRefGoogle Scholar
  13. 13.
    Becker, J. S.; Zoriy, M. V.; Dehnhardt, M.; Pickhardt, C.; Zilles, K. Copper, Zinc, Phosphorus, and Sulfur Distribution in Thin Section of Rat Brain Tissues Measured by Laser Ablation Inductively Coupled Plasma Mass Spectrometry: Possibility for Small-Size Tumor Analysis. J. Anal. Atom. Spectrom. 2005, 20, 912–917.CrossRefGoogle Scholar
  14. 14.
    Becker, J. S.; Zoriy, M.; Pickhardt, C.; Damoc, E.; Juhacz, G.; Palkovits, M.; Przybylski, M. Determination of Phosphorus-, Copper-, and Zinc-Containing Human Brain Proteins by LA-ICPMS and MALDI-FTICR-MS. Anal. Chem. 2005, 77, 5851–5860.CrossRefGoogle Scholar
  15. 15.
    Becker, J.; Matusch, A.; Depboylu, C.; Dobrowolska, J.; Zoriy, M. Quantitative Imaging of Selenium, Copper, and Zinc in Thin Sections of Biological Tissue (Slugs-Genus Arion) Measured by LA-ICP-MS. Anal. Chem. 2007, 79, 6074–6080.CrossRefGoogle Scholar
  16. 16.
    Dobrowolska, J.; Dehnhardt, M.; Matusch, A.; Zoriy, M.; Palomero-Gallagher, N.; Koscielniak, P.; Zilles, K.; Becker, J. S. Quantitative Imaging of Zinc, Copper, and Lead in Three Distinct Regions of the Human Brain by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Talanta. 2008, 74, 717–723.CrossRefGoogle Scholar
  17. 17.
    Zoriy, M.; Matusch, A.; Spruss, T.; Becker, J. S. Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Imaging of Copper, Zinc, and Platinum in Thin Sections of a Kidney from a Mouse Treated with cis-Platin. Int. J. Mass Spectrom. Mass Spectrom. 2007, 260(Special Issue), 102–106.CrossRefGoogle Scholar
  18. 18.
    Zoriy, M. V.; Dehnhardt, M.; Reifenberger, G.; Zilles, K.; Becker, J. S. Imaging of Cu, Zn, Pb, and U in Human Brain Tumor Resections by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Int. J. Mass Spectrom. 2006, 257, 27–33.CrossRefGoogle Scholar
  19. 19.
    Pozebon, D.; Dressler, V.; Matusch, A.; Becker, J. Monitoring of Platinum in a Single Hair by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) After Cisplatin Treatment of Cancer. Int. J. Mass Spectrom. 2008, 272, 57–62.CrossRefGoogle Scholar
  20. 20.
    Becker, J. S.; Pozebon, D.; Dressler, V. L.; Lobinski, R.; Becker, J. S. LA-ICP-MS Studies of Zinc Exchange by Copper in Bovine Serum Albumin Using an Isotopic Enriched Copper Tracer. J. Anal. At. Spectrom. 2008, 23, 1076–1082.CrossRefGoogle Scholar
  21. 21.
    Zoriy, M.; Dehnhardt, M.; Matusch, A.; Becker, J. S. Comparative Imaging of P, S, Fe, Cu, Zn, and C in Thin Sections of Rat Brain Tumor as well as Control Tissues by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Spectrochim. Acta B. 2008, 63, 375–382.CrossRefGoogle Scholar
  22. 22.
    Becker, J. S.; Zoriy, M.; Matusch, A.; Salber, D.; Palm, C.; Becker, J. S. Bioimaging of Metals by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Mass Spectrom. Rev. 2009, published on-line, DOI 10.1002/mas. 20239.Google Scholar
  23. 23.
    Becker, J. S.; Zoriy, M.; Wu, B.; Matusch, A.; Becker, J. Su: Imaging of Essential and Toxic Elements in Biological Tissues by LA-ICP-MS. J. Anal. At. Spectrom. 2008, 23, 1275–1280.CrossRefGoogle Scholar
  24. 24.
    Pickhardt, C.; Izmer, A.; Zoriy, M.; Schaumloffel, D.; Becker, J. S. On-Line Isotope Dilution in Laser Ablation Inductively Coupled Plasma Mass Spectrometry Using a Microflow Nebulizer Inserted in the Laser Ablation Chamber. Int. J. Mass Spectrom. 2006, 248, 136–141.CrossRefGoogle Scholar
  25. 25.
    Markey, S.; Johannessen, J.; Chiueh, C.; Burns, R.; Herkenham, M. Intraneuronal Generation of a Pyridinium Metabolite May Cause Drug-Induced Parkinsonism. Nature. 1984, 311, 464–467.CrossRefGoogle Scholar
  26. 26.
    Shimoji, M.; Zhang, L.; Mandir, A. S.; Dawson, V. L.; Dawson, T. M. Absence of Inclusion Body Formation in the MPTP Mouse Model of Parkinson’s Disease. Brain Res. Mol. Brain Res. 2005, 134, 103–108.CrossRefGoogle Scholar
  27. 27.
    Jackson-Lewis, V.; Przedborski, S. Protocol for the MPTP Mouse Model of Parkinson’s Disease. Nat. Protoc. 2007, 2, 141–151.CrossRefGoogle Scholar
  28. 28.
    Hare, D.; Reedy, B.; Grimm, R.; Wilkins, S.; Volitakis, I.; George, J.; Cherny, R.; Bush, A.; Finkelstein, D.; Doble, P. Quantitative Elemental Bioimaging of Mn, Fe, Cu, and Zn in 6-Hydroxydopamine Induced Parkinsonism Mouse Models. Metallomics. 2009, 1, 53–58.CrossRefGoogle Scholar
  29. 29.
    Paxinos, G.; Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates, 2nd edition, Paxinos, G., Franklin, K. B. J., Eds.; Academic Press: San Diego, 2001.Google Scholar
  30. 30.
    Hoglinger, G. U.; Breunig, J. J.; Depboylu, C.; Rouaux, C.; Michel, P. P.; Alvarez-Fischer, D.; Boutillier, A. L.; Degregori, J.; Oertel, W. H.; Rakic, P.; Hirsch, E. C.; Hunot, S. The pRb/E2F Cell-Cycle Pathway Mediates Cell Death in Parkinson’s Disease. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 3585–3590.CrossRefGoogle Scholar
  31. 31.
    Weihe, E.; Depboylu, C.; Schutz, B.; Schafer, M. K.; Eiden, L. E. Three Types of Tyrosine Hydroxylase-Positive CNS Neurons Distinguished by Dopa Decarboxylase and VMAT2 Coexpression. Cell. Mol. Neurobiol. 2006, 26, 659–678.Google Scholar
  32. 32.
    Rios, C.; Alvarez-Vega, R.; Rojas, P. Depletion of Copper and Manganese in Brain after MPTP Treatment of Mice. Pharmacol. Toxicol. 1995, 76, 348–352.CrossRefGoogle Scholar
  33. 33.
    Salazar, J.; Mena, N.; Hunot, S.; Prigent, A.; Alvarez-Fischer, D.; Arredondo, M.; Duyckaerts, C.; Sazdovitch, V.; Zhao, L.; Garrick, L. M.; Nunez, M. T.; Garrick, M. D.; Raisman-Vozari, R.; Hirsch, E. C. Divalent Metal Transporter 1 (DMT1) Contributes to Neurodegeneration in Animal Models of Parkinson’s Disease. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 18578–18583.CrossRefGoogle Scholar
  34. 34.
    Jiang, H.; Qian, Z. M.; Xie, J. X. Increased DMT1 Expression and Iron Content in MPTP-Treated C57BL/6 Mice. Sheng Li Xue Bao. 2003, 55, 571–576.Google Scholar
  35. 35.
    Tarohda, T.; Ishida, Y.; Kawai, K.; Yamamoto, M.; Amano, R. Regional Distributions of Manganese, Iron, Copper, and Zinc in the Brains of 6-hHydroxydopamine-Induced Parkinsonian Rats. Anal. Bioanal. Chem. 2005, 383, 224–234.CrossRefGoogle Scholar
  36. 36.
    Choi, B.; Zheng, W. Copper Transport to the Brain by the Blood-Brain Barrier and Blood-CSF Barrier. Brain Res. 2009, 1248, 14–21.CrossRefGoogle Scholar
  37. 37.
    Lee, J.; Peña, M. M.; Nose, Y.; Thiele, D. J. Biochemical Characterization of the Human Copper Transporter Ctr1. J. Biol. Chem. 2002, 277, 4380–4387.CrossRefGoogle Scholar
  38. 38.
    Schlief, M. L.; Craig, A. M.; Gitlin, J. D. NMDA Receptor Activation Mediates Copper Homeostasis in Hippocampal Neurons. J. Neurosci. 2005, 25, 239–246.CrossRefGoogle Scholar
  39. 39.
    Saito, T.; Okabe, M.; Hosokawa, T.; Kurasaki, M.; Hata, A.; Endo, F.; Nagano, K.; Matsuda, I.; Urakami, K.; Saito, K. Immunohistochemical Determination of the Wilson Copper-Transporting P-Yype ATPase in the Brain Tissues of the Rat. Neurosci. Lett. 1999, 266, 13–16.CrossRefGoogle Scholar
  40. 40.
    Wang, L.; Wu, Q.; Becker, J.; Oliveira, M.; Bozza, F.; Schawager, A.; Lee, M.; Hoffman, J.; Morton, K. Decreased Copper Uptake in Brains of Aging Mice. 2009, in press.Google Scholar
  41. 41.
    Rubio-Osornio, M.; Montes, S.; Perez-Severiano, F.; Aguilera, P.; Floriano-Sanchez, E.; Monroy-Noyola, A.; Rubio, C.; Rios, C. Copper Reduces Striatal Protein Nitration and Tyrosine Hydroxylase Inactivation Induced by MPP+ in Rats. Neurochem. Int. 2009, 54, 447–451.CrossRefGoogle Scholar
  42. 42.
    Kaur, D.; Yantiri, F.; Rajagopalan, S.; Kumar, J.; Mo, J. Q.; Boonplueang, R.; Viswanath, V.; Jacobs, R.; Yang, L.; Beal, M. F.; DiMonte, D.; Volitaskis, I.; Ellerby, L.; Cherny, R. A.; Bush, A. I.; Andersen, J. K. Genetic or Pharmacologic Iron Chelation Prevents MPTP-Induced Neurotoxicity In Vivo: A Novel Therapy for Parkinson’s Disease. Neuron. 2003, 37, 899–909.CrossRefGoogle Scholar
  43. 43.
    Corsini, G.; Pintus, S.; Chiueh, C.; Weiss, J.; Kopin, I. 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) Neurotoxicity in Mice is Enhanced by Pretreatment with Diethyldithiocarbamate. Eur. J. Pharmacol. 1985, 119, 127–128.CrossRefGoogle Scholar
  44. 44.
    Boll, M.; Alcazaz-Zubeldia, M.; Montes, S.; Rios, C. Free Copper, Ferro-Oxidase and SOD1 Activities, Lipid Peroxidation, and NO(x) Content in the CSF: A Different Marker Profile in Four Neurodegenerative Diseases. Neurochem. Res. 2008, 33, 1717–1723.CrossRefGoogle Scholar
  45. 45.
    Treiber, C.; Simons, A.; Strauss, M.; Hafner, M.; Cappai, R.; Bayer, T. A.; Multhaup, G. Clioquinol Mediates Copper Uptake and Counteracts Copper Efflux Activities of the Amyloid Precursor Protein of Alzheimer’s Disease. J. Biol. Chem. 2004, 279, 51958–51964.CrossRefGoogle Scholar
  46. 46.
    Przedborski, S.; Kostić, V.; Jackson-Lewis, V.; Carlson, E.; Epstein, C. J.; Cadet, J. L. Quantitative Autoradiographic Distribution of [3H]MPTP Binding in the Brain of Superoxide Dismutase Transgenic Mice. Brain Res. Bull. 1991, 26, 987–991.CrossRefGoogle Scholar
  47. 47.
    Javitch, J. A.; D’Amato, R. J.; Strittmatter, S. M.; Snyder, S. H. Parkinsonism Inducing Neurotoxin, N-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine: Uptake of the Metabolite N-Methyl-4-Phenylpyridinium by Dopamine Neurons Explain Selective Toxicity. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 2173–2177.CrossRefGoogle Scholar
  48. 48.
    Javitch, J. A.; Uhl, G.; Snyder, S. Parkinson-Inducing Neurotoxin, N-methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine: Characterization and Localization of Receptor Binding Sites in Rat and Human Brain. Proc. Natl. Acad. Sci. U.S.A. 1984, 81, 4591–4595.CrossRefGoogle Scholar
  49. 49.
    Saura, J.; Richards, J. G.; Mahy, N. Differential Age-Related Changes of MAO-A and MAO-B in Mouse Brain and Peripheral Organs. Neurobiol. Aging. 1994, 15, 399–408.CrossRefGoogle Scholar
  50. 50.
    Gottesfeld, Z. Lesion-Induced Catecholaminergic Sprouting in the Interpeduncular Nucleus. Neurochem. Res. 1984, 9, 325–331.CrossRefGoogle Scholar
  51. 51.
    Morley, B. J. The Interpeduncular Nucleus. Int. Rev. Neurobiol. 1986, 28, 157–182.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Andreas Matusch
    • 2
  • Candan Depboylu
    • 3
  • Christoph Palm
    • 2
  • Bei Wu
    • 1
    • 4
  • Günter U. Höglinger
    • 3
  • Martin K. -H. Schäfer
    • 5
  • J. Sabine Becker
    • 1
  1. 1.Central Division of Analytical ChemistryForschungszentrum JülichJülichGermany
  2. 2.Institute of Neurosciences and Medicine (INM-1 and −2)Forschungszentrum JülichJülichGermany
  3. 3.Experimental Neurology, Department of NeurologyPhilipps UniversityMarburgGermany
  4. 4.Department of Environmental EngineeringZhejiang UniversityHangzhouChina
  5. 5.Department of Molecular Neuroscience, Institute of Anatomy and Cell BiologyPhilipps UniversityMarburgGermany

Personalised recommendations