Direct detection of benzene, toluene, and ethylbenzene at trace levels in ambient air by atmospheric pressure chemical ionization using a handheld mass spectrometer

  • Guangming Huang
  • Liang Gao
  • Jason Duncan
  • Jason D. Harper
  • Nathaniel L. Sanders
  • Zheng Ouyang
  • R. Graham Cooks
Application Note


The capabilities of a portable mass spectrometer for real-time monitoring of trace levels of benzene, toluene, and ethylbenzene in air are illustrated. An atmospheric pressure interface was built to implement atmospheric pressure chemical ionization for direct analysis of gas-phase samples on a previously described miniature mass spectrometer (Gao et al. Anal. Chem. 2006, 78, 5994–6002). Linear dynamic ranges, limits of detection and other analytical figures of merit were evaluated: for benzene, a limit of detection of 0.2 parts-per-billion was achieved for air samples without any sample preconcentration. The corresponding limits of detection for toluene and ethylbenzene were 0.5 parts-per-billion and 0.7 parts-per-billion, respectively. These detection limits are well below the compounds’ permissible exposure levels, even in the presence of added complex mixtures of organics at levels exceeding the parts-per-million level. The linear dynamic ranges of benzene, toluene, and ethylbenzene are limited to approximately two orders of magnitude by saturation of the detection electronics.

Supplementary material

13361_2011_210100132_MOESM1_ESM.doc (116 kb)
Supplementary material, approximately 118 KB.


  1. 1.
    Rinsky, R. A.; Smith, A. B.; Hornung, R.; Filloon, T. G.; Young, R. J.; Okun, A. H.; Landrigan, P. J. Benzene and Leukemia—an Epidemiologic Risk Assessment. New Engl. J. Med 1987, 316, 1044–1050.CrossRefGoogle Scholar
  2. 2.
    Hayes, R. B.; Yin, S. N.; Dosemeci, M.; Li, G. L.; Wacholder, S.; Travis, L. B.; Li, C. Y.; Rothman, N.; Hoover, R. N.; Linet, M. S. Benzene and the Dose-Related Incidence of Hematologic Neoplasms in China. J. Natl. Cancer I 1997, 89, 1065–1071.CrossRefGoogle Scholar
  3. 3.
    Lynge, E.; Andersen, A.; Nilsson, R.; Barlow, L.; Pukkala, E.; Nordlinder, R.; Boffetta, P.; Grandjean, P.; Heikkila, P.; Horte, L. G.; Jakobsson, R.; Lundberg, I.; Moen, B.; Partanen, T.; Riise, T. Risk of Cancer and Exposure to Gasoline Vapors. Am. J. Epidemiol 1997, 145, 449–458.CrossRefGoogle Scholar
  4. 4.
    Agency for Toxic Substances and Disease Registry,, accessed July 2009.Google Scholar
  5. 5., accessed July 2009.Google Scholar
  6. 6., accessed July 2009.Google Scholar
  7. 7.
    Directive 2000/69/EC of the European Parliament and of the Council of 16 November 2000 Relating to Limit Values for Benzene and Carbon Monoxide in Ambient Air. Official Journal L131, 13/12/2000.Google Scholar
  8. 8.
    Hill, H. H.; Martin, S. J. Conventional Analytical Methods for Chemical Warfare Agents. Pure Appl. Chem 2002, 74, 2281–2291.CrossRefGoogle Scholar
  9. 9.
    Seto, Y.; Kanamori-Kataoka, M.; Tsuge, K.; Ohsawa, I.; Matsushita, K.; Sekiguchi, H.; Itoi, T.; Iura, K.; Sano, Y.; Yamashiro, S. Sensing Technology for Chemical Warfare Agents and Its Evaluation Using Authentic Agents. Sens. Actuators B, Chem 2005, 108, 193–197.CrossRefGoogle Scholar
  10. 10.
    Seto, Y.; Kanamori-Kataoka, M.; Tsuge, K.; Ohsawa, I.; Maruko, H.; Sekiguchi, H.; Sano, Y.; Yamashiro, S.; Matsushita, K.; Itoi, T.; Iura, K. Development of an On-Site Detection Method for Chemical and Biological Warfare Agents. Toxin. Rev 2007, 26, 299–312.CrossRefGoogle Scholar
  11. 11.
    Arthur, C. L.; Killam, L. M.; Buchholz, K. D.; Pawliszyn, J.; Berg, J. R. Automation and Optimization of Solid-Phase Microextraction. Anal. Chem 1992, 64, 1960–1966.CrossRefGoogle Scholar
  12. 12.
    Zhang, Z. Y.; Yang, M. J.; Pawliszyn, J. Solid-Phase Microextraction. Anal. Chem 1994, 66, A844-A853.CrossRefGoogle Scholar
  13. 13.
    Gorecki, T.; Pawliszyn, J. Effect of Sample Volume on Quantitative Analysis by Solid-Phase Microextraction. 1: Theoretical Considerations. Analyst 1997, 122, 1079–1086.CrossRefGoogle Scholar
  14. 14.
    Gorecki, T.; Khaled, A.; Pawliszyn, J. The Effect of Sample Volume on Quantitative Analysis by Solid Phase Microextraction. 2: Experimental Verification. Analyst 1998, 123, 2819–2824.CrossRefGoogle Scholar
  15. 15.
    Zhang, Z. Y.; Pawliszyn, J. Headspace Solid-Phase Microextraction. Anal. Chem 1993, 65, 1843–1852.CrossRefGoogle Scholar
  16. 16.
    Braida, W. J.; Pignatello, J. J.; Lu, Y. F.; Ravikovitch, P. I.; Neimark, A. V.; Xing, B. S. Sorption Hysteresis of Benzene in Charcoal Particles. Environ. Sci. Technol 2003, 37, 409–417.CrossRefGoogle Scholar
  17. 17.
    Liverman, D. M.; Wilson, J. P. The Mississauga Train Derailment and Evacuation, 10–16 November 1979. Canadian Geographer Geographe Canadien 1981, 25, 365–375.CrossRefGoogle Scholar
  18. 18.
    Carroll, D. I.; Dzidic, I.; Stillwell, R. N.; Haegele, K. D.; Horning, E. C. Atmospheric Pressure Ionization Mass Spectrometry-Corona Discharge Ion Source for Use in Liquid Chromatograph Mass Spectrometer Computer Analytical System. Anal. Chem 1975, 47, 2369–2373.CrossRefGoogle Scholar
  19. 19.
    Carroll, D. I.; Dzidic, I.; Horning, M. G.; Montgomery, F. E.; Nowlin, J. G.; Stillwell, R. N.; Thenot, J. P.; Horning, E. C. Chemical Ionization Mass Spectrometry of Nonvolatile Organic Compounds. Anal. Chem 1979, 51, 1858–1860.CrossRefGoogle Scholar
  20. 20.
    Riter, L. S.; Laughlin, B. C.; Nikolaev, E.; Cooks, R. G. Direct Analysis of Volatile Organic Compounds in Human Breath using a Miniaturized Cylindrical Ion Trap Mass Spectrometer with a Membrane Inlet. Rapid Commun. Mass Spectrom 2002, 16, 2370–2373.CrossRefGoogle Scholar
  21. 21.
    Keil, A.; Hernandez-Soto, H.; Noll, R. J.; Fico, M.; Gao, L.; Ouyang, Z.; Cooks, R. G. Monitoring of Toxic Compounds in Air Using a Handheld Rectilinear Ion Trap Mass Spectrometer. Anal. Chem 2008, 80, 734–741.CrossRefGoogle Scholar
  22. 22.
    Johnson, R. C.; Cooks, R. G.; Allen, T. M.; Cisper, M. E.; Hemberger, P. H. Membrane Introduction: Mass Spectrometry: Trends and Applications. Mass Spectrom. Rev 2000, 19, 1–37.CrossRefGoogle Scholar
  23. 23.
    Alberici, R. M.; Zampronio, C. G.; Poppi, R. J.; Eberlin, M. N. Water Solubilization of Ethanol and BTEX from Gasoline: On-line Monitoring by Membrane Introduction Mass Spectrometry. Analyst 2002, 127, 230–234.CrossRefGoogle Scholar
  24. 24.
    Janfelt, C.; Frandsen, H.; Lauritsen, F. R. Characterization of a Mini-Membrane Inlet Mass Spectrometer for On-site Detection of Contaminants in Both Aqueous and Liquid Organic Samples. Rapid Commun. Mass Spectrom 2006, 20, 1441–1446.CrossRefGoogle Scholar
  25. 25.
    Frandsen, H.; Janfelt, C.; Lauritsen, F. R. Fast and Direct Screening of Polyaromatic Hydrocarbon (PAH)-Contaminated Sand Using a Miniaturized Membrane Inlet Mass Spectrometer (mini-MIMS). Rapid Commun. Mass Spectrom 2007, 21, 1574–1578.CrossRefGoogle Scholar
  26. 26.
    Sokol, E.; Edwards, K. E.; Qian, K.; Cooks, R. G. Rapid Hydrocarbon Analysis Using a Miniature Rectilinear Ion trap Mass Spectrometer. Analyst 2008, 133, 1064–1071.CrossRefGoogle Scholar
  27. 27.
    Horning, E. C.; Horning, M. G.; Carroll, D. I.; Dzidic, I.; Stillwel, R. N. New Picogram Detection System Based on a Mass Spectrometer with an External Ionization Source at Atmospheric Pressure. Anal. Chem 1973, 45, 936–943.CrossRefGoogle Scholar
  28. 28.
    Sunner, J.; Nicol, G.; Kebarle, P. Factors Determining: Relative Sensitivity of Analytes in Positive Mode Atmospheric Pressure Ionization Mass Spectrometry. Anal. Chem 1988, 60, 1300–1307.CrossRefGoogle Scholar
  29. 29.
    Gao, L.; Song, Q. Y.; Patterson, G. E.; Cooks, R. G.; Ouyang, Z. Handheld Rectilinear Ion Trap Mass Spectrometer. Anal. Chem 2006, 78, 5994–6002.CrossRefGoogle Scholar
  30. 30.
    Mulligan, C. C.; Justes, D. R.; Noll, R. J.; Sanders, N. L.; Laughlin, B. C.; Cooks, R. G. Direct Monitoring of Toxic Compounds in Air Using a Portable Mass Spectrometer. Analyst 2006, 131, 556–567.CrossRefGoogle Scholar
  31. 31.
    Cotte-Rodriguez, I.; Justes, D. R.; Nanita, S. C.; Noll, R. J.; Mulligan, C. C.; Sanders, N. L.; Cooks, R. G. Analysis of Gaseous Toxic Industrial Compounds and Chemical Warfare Agent Simulants by Atmospheric Pressure Ionization Mass Spectrometry. Analyst 2006, 131, 579–589.CrossRefGoogle Scholar
  32. 32.
    Carroll, D. I.; Dzidic, I.; Stillwell, R. N.; Horning, M. G.; Horning, E. C. Subpicogram Detection System for Gas Phase Analysis Based Upon Atmospheric Pressure Ionization (API) Mass Spectrometry. Anal. Chem 1974, 46, 706–710.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Guangming Huang
    • 1
  • Liang Gao
    • 1
  • Jason Duncan
    • 1
  • Jason D. Harper
    • 1
  • Nathaniel L. Sanders
    • 1
  • Zheng Ouyang
    • 2
  • R. Graham Cooks
    • 1
  1. 1.Department of Chemistry and Center for Analytical Instrumentation DevelopmentPurdue UniversityWest LafayetteUSA
  2. 2.Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations