On-tissue protein identification and imaging by MALDI-Ion mobility mass spectrometry

  • Jonathan Stauber
  • Luke MacAleese
  • Julien Franck
  • Emmanuelle Claude
  • Marten Snel
  • Basak Kükrer Kaletas
  • Ingrid M. V. D. Wiel
  • Maxence Wisztorski
  • Isabelle Fournier
  • Ron M. A. HeerenEmail author


MALDI imaging mass spectrometry (MALDI-IMS) has become a powerful tool for the detection and localization of drugs, proteins, and lipids on-tissue. Nevertheless, this approach can only perform identification of low mass molecules as lipids, pharmaceuticals, and peptides. In this article, a combination of approaches for the detection and imaging of proteins and their identification directly on-tissue is described after tryptic digestion. Enzymatic digestion protocols for different kinds of tissues—formalin fixed paraffin embedded (FFPE) and frozen tissues—are combined with MALDI-ion mobility mass spectrometry (IM-MS). This combination enables localization and identification of proteins via their related digested peptides. In a number of cases, ion mobility separates isobaric ions that cannot be identified by conventional MALDI time-of-flight (TOF) mass spectrometry. The amount of detected peaks per measurement increases (versus conventional MALDI-TOF), which enables mass and time selected ion images and the identification of separated ions. These experiments demonstrate the feasibility of direct proteins identification by ion-mobility-TOF IMS from tissue. The tissue digestion combined with MALDI-IM-TOF-IMS approach allows a proteomics “bottom-up” strategy with different kinds of tissue samples, especially FFPE tissues conserved for a long time in hospital sample banks. The combination of IM with IMS marks the development of IMS approaches as real proteomic tools, which brings new perspectives to biological studies.


MALDI Drift Time Image Mass Spectrometry MALDI Image Mass Spectrometric Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jones, E. A.; Lockyer, N. P.; Vickerman, J. C. Mass Spectral Analysis and Imaging of Tissue by TOF-SIMS—The Role of Buckminsterfullerene, C-60(+), Primary Ions. Int. J. Mass Spectrom. 2007, 260, 146–157.CrossRefGoogle Scholar
  2. 2.
    Wucher, A. Molecular Secondary Ion Formation Under Cluster Bombardment: A Fundamental Review. Appl. Surf. Sci. 2006, 252, 6482–6489.CrossRefGoogle Scholar
  3. 3.
    Winograd, N. The Magic of Cluster SIMS. Anal. Chem. 2005, 77, 142A-149A.CrossRefGoogle Scholar
  4. 4.
    Wong, S. C. C.; Hill, R.; Blenkinsopp, P.; Lockyer, N. P.; Weibel, D. E.; Vickerman, J. C. Development of a C-60(+) Ion Gun for Static SIMS and Chemical Imaging. Appl. Surf. Sci. 2003, 203, 219–222.CrossRefGoogle Scholar
  5. 5.
    Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp, F. Matrix-Assisted Ultraviolet Laser Desorption of Nonvolatile Compounds. Int. J. Mass Spectrom. Ion Processes 1987, 78, 53–68.CrossRefGoogle Scholar
  6. 6.
    Hillenkamp, F.; Karas, M. Matrix-Assisted Laser Desorption/Ionization, an Experience. Int. J. Mass Spectrom. 2000, 200, 71–77.CrossRefGoogle Scholar
  7. 7.
    Karas, M.; Hillenkamp, F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltons. Anal. Chem. 1988, 60, 2299–2301.CrossRefGoogle Scholar
  8. 8.
    Zenobi, R.; Knochenmuss, R. Ion Formation in MALDI Mass Spectrometry. Mass Spectrom. Rev. 1998, 17, 337–366.CrossRefGoogle Scholar
  9. 9.
    Stoeckli, M.; Chaurand, P.; Hallahan, D. E.; Caprioli, R. M. Imaging Mass Spectrometry: A New Technology for the Analysis of Protein Expression in Mammalian Tissues. Nat. Med. 2001, 7, 493–496.CrossRefGoogle Scholar
  10. 10.
    Stoeckli, M.; Farmer, T. B.; Caprioli, R. M. Automated Mass Spectrometry Imaging with a Matrix-Assisted Laser Desorption Ionization Time-of-Flight Instrument. J. Am. Soc. Mass Spectrom. 1999, 10, 67–71.CrossRefGoogle Scholar
  11. 11.
    McDonnell, L. A.; Heeren, R. M. A. Imaging Mass Spectrometry. Mass Spectrom. Rev. 2007, 26, 606–643.CrossRefGoogle Scholar
  12. 12.
    Garden, R. W.; Sweedler, J. V. Heterogeneity Within MALDI Samples as Revealed by Mass Spectrometric Imaging. Anal. Chem. 2000, 72, 30–36.CrossRefGoogle Scholar
  13. 13.
    Troendle, F. J.; Reddick, C. D.; Yost, R. A. Detection of Pharmaceutical Compounds in Tissue by Matrix-Assisted Laser Desorption/Ionization and Laser Desorption/Chemical Ionization Tandem Mass Spectrometry with a Quadrupole Ion Trap. J. Am. Soc. Mass Spectrom. 1999, 10, 1315–1321.CrossRefGoogle Scholar
  14. 14.
    Lemaire, R.; Wisztorski, M.; Desmons, A.; Tabet, J. C.; Day, R.; Salzet, M.; Fournier, I. MALDI-MS Direct Tissue Analysis of Proteins: Improving Signal Sensitivity Using Organic Treatments. Anal. Chem. 2006, 78, 7145–7153.CrossRefGoogle Scholar
  15. 15.
    Chaurand, P.; Rahman, M. A.; Hunt, T.; Mobley, J. A.; Gu, G.; Latham, J. C.; Caprioli, R. M.; Kasper, S. Monitoring Mouse Prostate Development by Profiling and Imaging Mass Spectrometry. Mol. Cell. Proteom. 2008, 7, 411–423.CrossRefGoogle Scholar
  16. 16.
    Heeren, R. M. A.; Kaletas, B.; Taban, I. M.; MacAleese, L.; McDonnell, L. A. Quality of Surface: The Influence of Sample Preparation on MS Based Biomolecular Tissue Imaging with MALDI-MS and (ME-)SIMS. Appl. Surf. Sci. 2008, 255, 1289–1297.CrossRefGoogle Scholar
  17. 17.
    Luxembourg, S. L.; Mize, T. H.; McDonnell, L. A.; Heeren, R. M. A. High-Spatial Resolution Mass Spectrometric Imaging of Peptide and Protein Distributions on a Surface. Anal. Chem. 2004, 76, 5339–5344.CrossRefGoogle Scholar
  18. 18.
    Altelaar, A. F. M.; Taban, I. M.; McDonnell, L. A.; Verhaert, P.; de Lange, R. P. J.; Adan, R. A. H.; Mooi, W. J.; Heeren, R. M. A.; Piersma, S. R. High-Resolution MALDI Imaging Mass Spectrometry Allows Localization of Peptide Distributions at Cellular Length Scales in Pituitary Tissue Sections. Int. J. Mass Spectrom. 2007, 260, 203–211.CrossRefGoogle Scholar
  19. 19.
    Froesch, M.; Kharchenko, A.; Luxembourg, S. L.; Verheijde, D.; Heeren, R. M. A. Imaging Mass Spectrometry Using a Delay Line Detector. Eur. J. Mass Spectrom. 2009, in press.Google Scholar
  20. 20.
    Jurchen, J. C.; Rubakhin, S. S.; Sweedler, J. V. MALDI-MS Imaging of Features Smaller than the Size of the Laser Beam. J. Am. Soc. Mass Spectrom. 2005, 6, 1654–1659.CrossRefGoogle Scholar
  21. 21.
    Schwartz, S. A.; Reyzer, M. L.; Caprioli, R. M. Direct Tissue Analysis Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry: Practical Aspects of Sample Preparation. J. Mass Spectrom. 2003, 38, 699–708.CrossRefGoogle Scholar
  22. 22.
    Lemaire, R.; Desmons, A.; Tabet, J. C.; Day, R.; Salzet, M.; Fournier, I. Direct Analysis and MALDI Imaging of Formalin-Fixed, Paraffin-Embedded Tissue Sections. J. Proteome Res. 2007, 6, 1295–1305.CrossRefGoogle Scholar
  23. 23.
    Stauber, J.; Lemaire, R.; Franck, J.; Bonnel, D.; Croix, D.; Day, R.; Wisztorski, M.; Fournier, I.; Salzet, M. MALDI Imaging of Formalin-Fixed Paraffin-Embedded Tissues: Application to Model Animals of Parkinson Disease for Biomarker Hunting. J. Proteome Res. 2008, 7, 969–978.CrossRefGoogle Scholar
  24. 24.
    Aoki, Y.; Toyama, A.; Shimada, T.; Sugita, T.; Aoki, C.; Umino, Y.; Suzuki, A.; Aoki, D.; Daigo, Y.; Nakamura, Y.; Sato, T. A. A Novel Method for Analyzing Formalin-Fixed Paraffin Embedded (FFPE) Tissue Sections by Mass Spectrometry Imaging. Proc. Jpn. Acad. B Phys. Biol. Sci. 2007, 83, 205–214.CrossRefGoogle Scholar
  25. 25.
    McLean, J. A.; Stumpo, K. A.; Russell, D. H. Size-Selected (2–10 nm) Gold Nanoparticles for Matrix Assisted Laser Desorption Ionization of Peptides. J. Am. Chem. Soc. 2005, 127, 5304–5305.CrossRefGoogle Scholar
  26. 26.
    Taira, S.; Sugiura, Y.; Moritake, S.; Shimma, S.; Ichiyanagi, Y.; Setou, M. Nanoparticle-Assisted Laser Desorption/Ionization Based Mass Imaging with Cellular Resolution. Anal. Chem. 2008, 80, 4761–4766.CrossRefGoogle Scholar
  27. 27.
    Edirisinghe, P. D.; Moore, J. F.; Calaway, W. F.; Veryovkin, I. V.; Pellin, M. J.; Hanley, L. Vacuum Ultraviolet Post-Ionization of Aromatic Groups Covalently Bound to Peptides. Anal. Chem. 2006, 78, 5876–5883.CrossRefGoogle Scholar
  28. 28.
    Hanley, L.; Kornienko, O.; Ada, E. T.; Fuoco, E.; Trevor, J. L. Surface Mass Spectrometry of Molecular Species. J. Mass Spectrom. 1999, 34, 705–723.CrossRefGoogle Scholar
  29. 29.
    Stauber, J.; Lemaire, R.; Franck, J.; Bonnel, D.; Croix, D.; Day, R.; Wisztorski, M.; Fournier, I.; Salzet, M. MALDI Imaging of Formalin-Fixed Paraffin-Embedded Tissues: Application to Model Animals of Parkinson Disease for Biomarker Hunting. J. Proteome Res. 2008, 7, 969–978.CrossRefGoogle Scholar
  30. 30.
    Groseclose, M. R.; Andersson, M.; Hardesty, W. M.; Caprioli, R. M. Identification of Proteins Directly from Tissue: In Situ Tryptic Digestions Coupled with Imaging Mass Spectrometry. J. Mass Spectrom. 2007, 42, 254–262.CrossRefGoogle Scholar
  31. 31.
    Rohner, T. C.; Staab, D.; Stoeckli, M. MALDI Mass Spectrometric Imaging of Biological Tissue Sections. Mech. Aging Dev. 2005, 126, 177–185.CrossRefGoogle Scholar
  32. 32.
    Taban, I. M.; Altelaar, A. F. M.; van der Burgt, Y. E. M.; McDonnell, L. A.; Baykut, G.; Heeren, R. M. A. Imaging of Peptides in the Rat Brain Using MALDI-FTICR Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18, 145–151.CrossRefGoogle Scholar
  33. 33.
    Garrett, T. J.; Prieto-Conaway, M. C.; Kovtoun, V.; Bui, H.; Izgarian, N.; Stafford, G.; Yost, R. A. Imaging of Small Molecules in Tissue Sections with a New Intermediate-Pressure MALDI Linear Ion Trap Mass Spectrometer. Int. J. Mass Spectrom. 2007, 260, 166–176.CrossRefGoogle Scholar
  34. 34.
    Shimma, S.; Sugiura, Y.; Hayasaka, T.; Zaima, N.; Matsumoto, M.; Setou, M. Mass Imaging and Identification of Biomolecules with MALDI-QIT-TOF-Based System. Anal. Chem. 2008, 80, 878–885.CrossRefGoogle Scholar
  35. 35.
    McLean, J. A.; Ruotolo, B. T.; Gillig, K. J.; Russell, D. H. Ion Mobility-Mass Spectrometry: A New Paradigm for Proteomics. Int. J. Mass Spectrom. 2005, 240, 301–315.CrossRefGoogle Scholar
  36. 36.
    Verbeck, G.; Ruotolo, B.; Sawyer, H.; Gillig, K.; Russell, D. A Fundamental Introduction to Ion Mobility Mass Spectrometry Applied to the Analysis of Biomolecules. J. Biomol. Tech. 2002, 13, 56–61.Google Scholar
  37. 37.
    Clemmer, D. E.; Jarrold, M. F. Ion Mobility Measurements and Their Applications to Clusters and Biomolecules. J. Mass Spectrom. 1997, 32, 577–592.CrossRefGoogle Scholar
  38. 38.
    Vonhelden, G.; Wyttenbach, T.; Bowers, M. T. Inclusion of a MALDI Ion-Source in the Ion Chromatography Technique—Conformational Information on Polymer and Biomolecular Ions. Int. J. Mass Spectrom. Ion Processes 1995, 146, 349–364.CrossRefGoogle Scholar
  39. 39.
    Ruotolo, B. T.; McLean, J. A.; Gillig, K. J.; Russell, D. H. Peak Capacity of Ion Mobility Mass Spectrometry: The Utility of Varying Drift Gas Polarizability for the Separation of Tryptic Peptides. J. Mass Spectrom. 2004, 39, 361–367.CrossRefGoogle Scholar
  40. 40.
    Ruotolo, B. T.; Verbeck, G. F.; Thomson, L. M.; Woods, A. S.; Gillig, K. J.; Russell, D. H. Distinguishing Between Phosphorylated and Nonphosphorylated Peptides with Ion Mobility-Mass Spectrometry. J. Proteome Res. 2002, 1, 303–306.CrossRefGoogle Scholar
  41. 41.
    Hatsis, P.; Kapron, J. T. A Review on the Application of High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) in Drug Discovery. Rapid Commun. Mass Spectrom. 2008, 22, 735–738.CrossRefGoogle Scholar
  42. 42.
    Williams, J. P.; Scrivens, J. H. Coupling Desorption Electrospray Ionization and Neutral Desorption/Extractive Electrospray Ionization with a Traveling-Wave Based Ion Mobility Mass Spectrometer for the Analysis of Drugs. Rapid Commun. Mass Spectrom. 2008, 22, 187–196.CrossRefGoogle Scholar
  43. 43.
    J. Stauber, B. K. K.; van der Wiel, I. M.; Snel, M. F.; Claude, E.; Heeren, R. M. A. Ion Mobility Imaging Mass Spectrometry: A New Tool for In Situ Identification. Proceedings of the 56th ASMS conference; Denver, CO, June, 2008.Google Scholar
  44. 44.
    Jackson, S. N.; Ugarov, M.; Egan, T.; Post, J. D.; Langlais, D.; Schultz, J. A.; Woods, A. S. MALDI-Ion Mobility-TOF-MS Imaging of Lipids in Rat Brain Tissue. J. Mass Spectrom. 2007, 42, 1093–1098.CrossRefGoogle Scholar
  45. 45.
    Tempez, A.; Ugarov, M.; Egan, T.; Schultz, J. A.; Novikov, A.; Della-Negra, S.; Lebeyec, Y.; Pautrat, M.; Caroff, M.; Smentkowski, V. S.; Wang, H.-Y. J.; Jackson, S. N.; Woods, A. S. Matrix Implanted Laser Desorption Ionization (MILDI) Combined with Ion Mobility-Mass Spectrometry for Biosurface Analysis. J. Proteome Res. 2005, 4, 540–545.CrossRefGoogle Scholar
  46. 46.
    Woods, A. S.; Ugarov, M.; Egan, T.; Koomen, J.; Gillig, K. J.; Fuhrer, K.; Gonin, M.; Schultz, J. A. Lipid/Peptide/Nucleotide Separation with MALDI-Ion Mobility-TOF MS. Anal. Chem. 2004, 76, 2187–2195.CrossRefGoogle Scholar
  47. 47.
    Overton, W. R.; Catalano, E.; McCoy, J. P. Method to Make Paraffin-Embedded Breast and Lymph Tissue Mimic Fresh Tissue in DNA Analysis. Cytometry 1996, 26, 166–171.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Jonathan Stauber
    • 1
  • Luke MacAleese
    • 1
    • 4
  • Julien Franck
    • 2
  • Emmanuelle Claude
    • 3
  • Marten Snel
    • 3
  • Basak Kükrer Kaletas
    • 1
  • Ingrid M. V. D. Wiel
    • 1
  • Maxence Wisztorski
    • 2
  • Isabelle Fournier
    • 2
  • Ron M. A. Heeren
    • 1
    • 4
    Email author
  1. 1.Macromolecular Ion Physics, Biomolecular Mass SpectrometryFOM Institute for Atomic and Molecular PhysicsAmsterdamThe Netherlands
  2. 2.MALDI Imaging TeamUniversity of LilleLilleFrance
  3. 3.Waters CorporationManchesterUnited Kingdom
  4. 4.The Netherlands Proteomics CentreUtrechtThe Netherlands

Personalised recommendations