Investigating alternative acidic proteases for H/D exchange coupled to mass spectrometry: Plasmepsin 2 but not plasmepsin 4 is active under quenching conditions

  • Julien Marcoux
  • Eric Thierry
  • Corinne Vivès
  • Luca Signor
  • Franck Fieschi
  • Eric ForestEmail author
Application Note


Structural studies of proteins by hydrogen/deuterium exchange coupled to mass spectrometry (DXMS) require the use of proteases working at acidic pH and low temperatures. The spatial resolution of this technique can be improved by combining several acidic proteases, each generating a set of different peptides. Three commercial aspartic proteases are used, namely, pepsin, and proteases XIII and XVIII. However, given their low purity, high enzyme/protein ratios have to be used with proteases XIII and XVIII. In the present work, we investigate the activity of two alternative acidic proteases from Plasmodium falciparum under different pH and temperature conditions. Peptide mapping of four different proteins after digestion with pepsin, plasmepsin 2 (PSM2), and plasmepsin 4 (PSM4) were compared. PSM4 is inactive at pH 2.2 and 0°C, making it unusable for DXMS studies. However, PSM2 showed low but reproducible activity under DXMS conditions. It displayed no substrate specificity and, like pepsin, no strict sequence specificity. Altogether, these results show that PSM2 but not PSM4 is a potential new tool for DXMS studies.


Plasmodium Falciparum Aspartic Protease Acidic Protease Bovine Hemoglobin Exchange Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

13361_2011_210100076_MOESM1_ESM.doc (153 kb)
Supplementary material, approximately 157 KB.
13361_2011_210100076_MOESM2_ESM.pdf (2 mb)
Supplementary material, approximately 2114 KB.


  1. 1.
    Suchanova, B.; Tuma, R. Folding and Assembly of Large Macromolecular Complexes Monitored by Hydrogen-Deuterium Exchange and Mass Spectrometry. Microbiol. Cell Fact. 2008, 7, 12.CrossRefGoogle Scholar
  2. 2.
    Li, J.; Lim, M. S.; Li, S.; Brock, M.; Pique, M. E.; Woods, V. L. Jr.; Craig, L. Vibrio Cholerae Toxin-Coregulated Pilus Structure Analyzed by Hydrogen/Deuterium Exchange Mass Spectrometry. Structure 2008, 16, 137–148.CrossRefGoogle Scholar
  3. 3.
    Brier, S.; Lemaire, D.; Debonis, S.; Forest, E.; Kozielski, F. Identification of the Protein Binding Region of S-Trityl-L-Cysteine, a New Potent Inhibitor of the Mitotic Kinesin Eg5. Biochemistry 2004, 43, 13072–13082.CrossRefGoogle Scholar
  4. 4.
    Marcoux, J.; Man, P.; Castellan, M.; Vives, C.; Forest, E.; Fieschi, F. Conformational Changes in p47(phox) Upon Activation Highlighted by Mass Spectrometry Coupled to Hydrogen/Deuterium Exchange and Limited Proteolysis. FEBS Lett. 2009, 583, 835–840.CrossRefGoogle Scholar
  5. 5.
    Bai, Y.; Milne, J. S.; Mayne, L.; Englander, S. W. Primary Structure Effects on Peptide Group Hydrogen Exchange. Proteins 1993, 17, 75–86.CrossRefGoogle Scholar
  6. 6.
    Pan, J.; Han, J.; Borchers, C. H.; Konermann, L. Hydrogen/Deuterium Exchange Mass Spectrometry with Top-Down Electron Capture Dissociation for Characterizing Structural Transitions of a 17 kDa Protein. J. Am. Chem. Soc. 2009, 131, 12801–12808.CrossRefGoogle Scholar
  7. 7.
    Cravello, L.; Lascoux, D.; Forest, E. Use of Different Proteases Working in Acidic Conditions to Improve Sequence Coverage and Resolution in Hydrogen/Deuterium Exchange of Large Proteins. Rapid Commun. Mass Spectrom. 2003, 17, 2387–2393.CrossRefGoogle Scholar
  8. 8.
    Man, P.; Montagner, C.; Vernier, G.; Dublet, B.; Chenal, A.; Forest, E.; Forge, V. Defining the Interacting Regions Between Apomyoglobin and Lipid Membrane by Hydrogen/Deuterium Exchange Coupled to Mass Spectrometry. J. Mol. Biol. 2007, 368, 464–472.CrossRefGoogle Scholar
  9. 9.
    Alverdi, V.; Mazon, H.; Versluis, C.; Hemrika, W.; Esposito, G.; van den Heuvel, R.; Scholten, A.; Heck, A. J. cGMP-Binding Prepares PKG for Substrate Binding by Disclosing the C-Terminal Domain. J. Mol. Biol. 2008, 375, 1380–1393.CrossRefGoogle Scholar
  10. 10.
    Zhang, H. M.; Kazazic, S.; Schaub, T. M.; Tipton, J. D.; Emmett, M. R.; Marshall, A. G. Enhanced Digestion Efficiency, Peptide Ionization efficiency, and Sequence Resolution for Protein Hydrogen/Deuterium Exchange Monitored by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal Chem. 2008, 80, 9034–9041.CrossRefGoogle Scholar
  11. 11.
    Rey, M.; Man, P.; Brandolin, G.; Forest, E.; Pelosi, L. Recombinant Immobilized Rhizopus Pepsin as a New Tool for Protein Digestion in H/D Exchange Mass Spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 3431–3438.CrossRefGoogle Scholar
  12. 12.
    Madabushi, A.; Chakraborty, S.; Fisher, S. Z.; Clemente, J. C.; Yowell, C.; Agbandje-McKenna, M.; Dame, J. B.; Dunn, B. M.; McKenna, R. Crystallization and Preliminary X-ray Analysis of the Aspartic Protease Plasmepsin 4 from the Malarial Parasite Plasmodium malariae. Acta Crystallogr. F Struct Biol. Cryst. Commun. 2005, 61, 228–231.CrossRefGoogle Scholar
  13. 13.
    Silva, A. M.; Lee, A. Y.; Gulnik, S. V.; Maier, P.; Collins, J.; Bhat, T. N.; Collins, P. J.; Cachau, R. E.; Luker, K. E.; Gluzman, I. Y.; Francis, S. E.; Oksman, A.; Goldberg, D. E.; Erickson, J. W. Structure and Inhibition of Plasmepsin II, a Hemoglobin-Degrading Enzyme from Plasmodium falciparum. Proc. Natl. Acad Sci. U.S.A. 1996, 93, 10034–10039.CrossRefGoogle Scholar
  14. 14.
    Westling, J.; Cipullo, P.; Hung, S. H.; Saft, H.; Dame, J. B.; Dunn, B. M. Active Site Specificity of Plasmepsin II. Protein Sci. 1999, 8, 2001–2009.CrossRefGoogle Scholar
  15. 15.
    Durand, D.; Cannella, D.; Dubosclard, V.; Pebay-Peyroula, E.; Vachette, P.; Fieschi, F. Small-Angle X-ray Scattering Reveals an Extended Organization for the Autoinhibitory Resting State of the p47(phox) Modular Protein. Biochemistry 2006, 45, 7185–7193.CrossRefGoogle Scholar
  16. 16.
    Hill, J.; Tyas, L.; Phylip, L. H.; Kay, J.; Dunn, B. M.; Berry, C. High Level Expression and Characterization of Plasmepsin II, an Aspartic Proteinase from Plasmodium falciparum. FEBS Lett. 1994, 352, 155–158.CrossRefGoogle Scholar
  17. 17.
    Kim, Y. M.; Lee, M. H.; Piao, T. G.; Lee, J. W.; Kim, J. H.; Lee, S.; Choi, K. M.; Jiang, J. H.; Kim, T. U.; Park, H. Prodomain Processing of Recombinant Plasmepsin II and IV, the Aspartic Proteases of Plasmodium falciparum, is auto- and transcatalytic. J. Biochem. 2006, 139, 189–195.CrossRefGoogle Scholar
  18. 18.
    Le Bonniec, S.; Deregnaucourt, C.; Redeker, V.; Banerjee, R.; Grellier, P.; Goldberg, D. E.; Schrevel, J. Plasmepsin II, an Acidic Hemoglobinase from the Plasmodium falciparum food vacuole, is active at neutral pH on the host erythrocyte membrane skeleton. J. Biol. Chem. 1999, 274, 14218–14223.CrossRefGoogle Scholar
  19. 19.
    Li, T.; Yowell, C. A.; Beyer, B. B.; Hung, S. H.; Westling, J.; Lam, M. T.; Dunn, B. M.; Dame, J. B. Recombinant Expression and Enzymatic Subsite Characterization of Plasmepsin 4 from the four Plasmodium Species Infecting Man. Mol. Biochem. Parasitol. 2004, 135, 101–109.CrossRefGoogle Scholar
  20. 20.
    Smith, D. L.; Deng, Y.; Zhang, Z. Probing the Noncovalent Structure of Proteins by Amide Hydrogen Exchange and Mass Spectrometry. J. Mass Spectrom. 1997, 32, 135–146.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Julien Marcoux
    • 1
    • 2
  • Eric Thierry
    • 1
  • Corinne Vivès
    • 2
  • Luca Signor
    • 1
  • Franck Fieschi
    • 2
  • Eric Forest
    • 1
    Email author
  1. 1.Laboratoire de Spectrométrie de Masse des ProtéinesInstitut de Biologie StructuraleGrenobleFrance
  2. 2.Laboratoire des Protéines MembranairesUniversité Joseph Fourier, Institut de Biologie Structurale (IBS)GrenobleFrance

Personalised recommendations