Optimization of a direct analysis in real time/time-of-flight mass spectrometry method for rapid serum metabolomic fingerprinting

  • Manshui Zhou
  • John F. McDonald
  • Facundo M. FernándezEmail author


Metabolomic fingerprinting of bodily fluids can reveal the underlying causes of metabolic disorders associated with many diseases, and has thus been recognized as a potential tool for disease diagnosis and prognosis following therapy. Here we report a rapid approach in which direct analysis in real time (DART) coupled with time-of-flight (TOF) mass spectrometry (MS) and hybrid quadrupole TOF (Q-TOF) MS is used as a means for metabolomic fingerprinting of human serum. In this approach, serum samples are first treated to precipitate proteins, and the volatility of the remaining metabolites increased by derivatization, followed by DART MS analysis. Maximum DART MS performance was obtained by optimizing instrumental parameters such as ionizing gas temperature and flow rate for the analysis of identical aliquots of a healthy human serum samples. These variables were observed to have a significant effect on the overall mass range of the metabolites detected as well as the signal-to-noise ratios in DART mass spectra. Each DART run requires only 1.2 min, during which more than 1500 different spectral features are observed in a time-dependent fashion. A repeatability of 4.1% to 4.5% was obtained for the total ion signal using a manual sampling arm. With the appealing features of high-throughput, lack of memory effects, and simplicity, DART MS has shown potential to become an invaluable tool for metabolomic fingerprinting.


Helium Flow Rate Mass Spectrometer Inlet Flow Atmospheric Pressure Afterglow Dielectric Barrier Discharge Ionization Metabolomic Fingerprinting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

13361_2011_210100068_MOESM1_ESM.doc (516 kb)
Supplementary material, approximately 528 KB.


  1. 1.
    Dettmer, K.; Aronov, P. A.; Hammock, B. D. Mass Spectrometry-Based Metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78.CrossRefGoogle Scholar
  2. 2.
    Ala-Korpela, M. Critical Evaluation of 1H NMR Metabonomics of Serum as a Methodology for Disease Risk Assessment and Diagnostics. Clin. Chem. Lab. Med. 2008, 46, 27–42.CrossRefGoogle Scholar
  3. 3.
    Chan, E. C. Y.; Koh, P. K.; Mal, M.; Cheah, P. Y.; Eu, K. W.; Backshall, A.; Cavill, R.; Nicholson, J. K.; Keun, H. C. Metabolic Profiling of Human Colorectal Cancer Using High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) Spectroscopy and Gas Chromatography Mass Spectrometry (GC/MS). J. Proteome Res. 2009, 8, 352–361.CrossRefGoogle Scholar
  4. 4.
    Mäkinen, V. P.; Soininen, P.; Forsblom, C.; Parkkonen, M.; Ingman, P.; Kaski, K.; Groop, P. H.; Ala-Korpela, M.; FinnDiane Study Group. Diagnosing Diabetic Nephropathy by 1H NMR metabonomics of serum. MAGMA. 2006, 19, 281–296.CrossRefGoogle Scholar
  5. 5.
    Denkert, C.; Budczies, J.; Kind, T.; Weichert, W.; Tablack, P.; Sehouli, J.; Niesporek, S.; Könsgen, D.; Dietel, M.; Fiehn, O. Mass Spectrometry-Based Metabolic Profiling Reveals Different Metabolite Patterns in Invasive Ovarian Carcinomas and Ovarian Borderline Tumors. Cancer Res. 2006, 66, 10795–10804.CrossRefGoogle Scholar
  6. 6.
    Fancy, S. A.; Beckonert, O.; Darbon, G.; Yabsley, W.; Walley, R.; Baker, D.; Perkins, G. L.; Pullen, F. S.; Rumpel, K. Gas Chromatography/Flame Ionization Detection Mass Spectrometry for the Detection of Endogenous Urine Metabolites for Metabonomic Studies and Its Use as a Complementary Tool to Nuclear Magnetic Resonance Spectroscopy. Rapid Commun. Mass Spectrom. 2006, 20, 2271–2280.CrossRefGoogle Scholar
  7. 7.
    Lu, W.; Bennett, B. D.; Rabinowitz, J. D. Analytical Strategies for LC-MS-Based Targeted Metabolomics. J. Chromatogr. 2008, 871, 236–242.Google Scholar
  8. 8.
    Michopoulos, F.; Lai, L.; Gika, H.; Theodoridis, G.; Wilson, I. UPLC-MS-Based Analysis of Human Plasma for Metabonomics Using Solvent Precipitation or Solid Phase Extraction. J. Proteome Res. 2009, 8, 2114–2121.CrossRefGoogle Scholar
  9. 9.
    Pasikanti, K. K.; Ho, P. C.; Chan, E. C. Y. Gas Chromatography/Mass Spectrometry in Metabolic Profiling of Biological Fluids. J. Chromatogr. 2008, 871, 202–211.Google Scholar
  10. 10.
    Haapala, M.; Pol, J.; Saarela, V.; Arvola, V.; Kotiaho, T.; Ketola, R. A.; Franssila, S.; Kauppila, T. J.; Kostiainen, R. Desorption Atmospheric Pressure Photoionization. Anal. Chem. 2007, 79, 7867–7872.CrossRefGoogle Scholar
  11. 11.
    Cody, R. B.; Larame, J. A.; Durst, H. D. Versatile New Ion Source for the Analysis of Materials in Open Air Under Ambient Conditions. Anal. Chem. 2005, 77, 2297–2302.CrossRefGoogle Scholar
  12. 12.
    Andrade, F. J.; Shelley, J. T.; Wetzel, W. C.; Webb, M. R.; Gamez, G.; Ray, S. J.; Hieftje, G. M. Atmospheric Pressure Chemical Ionization Source. 2: Desorption-Ionization for the Direct Analysis of Solid Compounds. Anal. Chem. 2008, 80, 2654–2663.CrossRefGoogle Scholar
  13. 13.
    Ratcliffe, L. V.; Rutten, F. J.; Barrett, D. A.; Whitmore, T.; Seymour, D.; Greenwood, C.; Aranda-Gonzalvo, Y.; Robinson, S.; McCoustra, M. Surface Analysis Under Ambient Conditions Using Plasma-Assisted Desorption/Ionization Mass Spectrometry. Anal. Chem. 2007, 79, 6094–6101.CrossRefGoogle Scholar
  14. 14.
    Jackson, A. T.; Scrivens, J. H.; Williams, J. P.; Baker, E. S.; Gidden, J.; Bowers, M. T. Microstructural and Conformational Studies of Polyether Copolymers. Int. J. Mass Spectrom. 2004, 238, 287–297.CrossRefGoogle Scholar
  15. 15.
    Harper, J. D.; Charipar, N. A.; Mulligan, C. C.; Zhang, X.; Cooks, R. G.; Ouyang, Z. Low-Temperature Plasma Probe for Ambient Desorption Ionization. Anal. Chem. 2008, 80, 9097–9104.CrossRefGoogle Scholar
  16. 16.
    Na, N.; Zhang, C.; Zhao, M.; Zhang, S.; Yang, C.; Fang, X.; Zhang, X. Direct Detection of Explosives on Solid Surfaces by Mass Spectrometry with an Ambient Ion Source Based on Dielectric Barrier Discharge. J. Mass Spectrom. 2007, 42, 1079–1085.CrossRefGoogle Scholar
  17. 17.
    Petucci, C.; Diffendal, J.; Kaufman, D.; Mekonnen, B.; Terefenko, G.; Musselman, B. Direct Analysis in Real Time for Reaction Monitoring in Drug Discovery. Anal. Chem. 2007, 79, 5064–5070.CrossRefGoogle Scholar
  18. 18.
    Zhao, Y.; Lam, M.; Wu, D.; Mak, R. Quantification of Small Molecules in Plasma with Direct Analysis in Real Time Tandem Mass Spectrometry, Without Sample Preparation and Liquid Chromatographic Separation. Rapid Commun. Mass Spectrom. 2008, 22, 3217–3224.CrossRefGoogle Scholar
  19. 19.
    Fernandez, F. M.; Cody, R. B.; Green, M. D.; Hampton, C. Y.; McGready, R.; Sengaloundeth, S.; White, N. J.; Newton, P. N. Characterization of Solid Counterfeit Drug Samples by Desorption Electrospray Ionization and Direct Analysis-in-Real-Time Coupled to Time-of-Flight Mass Spectrometry. Chem. Med. Chem. 2006, 1, 702–705.CrossRefGoogle Scholar
  20. 20.
    Pierce, C. Y.; Barr, J. R.; Cody, R. B.; Massung, R. F.; Woolfitt, A. R.; Moura, H.; Thompson, H. A.; Fernandez, F. M. Ambient Generation of Fatty Acid Methyl Ester Ions from Bacterial Whole Cells by Direct Analysis in Real Time (DART) Mass Spectrometry. Chem. Commun. 2007, 8, 807–809.CrossRefGoogle Scholar
  21. 21.
    Haefliger, O. P.; Jeckelmann, N. Direct Mass Spectrometric Analysis of Flavors and Fragrances in Real Applications Using DART. Rapid Commun. Mass Spectrom. 2007, 21, 1361–1366.CrossRefGoogle Scholar
  22. 22.
    Schurek, J.; Vaclavik, L.; Hooijerink, H. D.; Lacina, O.; Poustka, J.; Sharman, M.; Caldow, M.; Nielen, M. W. F.; Hajslova, J. Control of Strobilurin Fungicides in Wheat Using Direct Analysis in Real Time Accurate Time-of-Flight and Desorption Electrospray Ionization Linear Ion Trap Mass Spectrometry. Anal. Chem. 2008, 80, 9567–9575.CrossRefGoogle Scholar
  23. 23.
    Williams, J. P.; Patel, V. J.; Holland, R.; Scrivens, J. H. The Use of Recently Described Ionization Techniques for the Rapid Analysis of Some Common Drugs and Samples of Biological Origin. Rapid Commun. Mass Spectrom. 2006, 20, 1447–1456.CrossRefGoogle Scholar
  24. 24.
    Harris, G. A.; Fernandez, F. M. Simulations and Experimental Investigation of Atmospheric Transport in an Ambient Metastable-Induced Chemical Ionization Source. Anal. Chem. 2009, 81, 322–329.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  • Manshui Zhou
    • 1
  • John F. McDonald
    • 2
    • 3
  • Facundo M. Fernández
    • 1
    Email author
  1. 1.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of BiologyGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Ovarian Cancer InstituteAtlantaUSA

Personalised recommendations