Distinction and quantitation of sugar isomers in ternary mixtures using the kinetic method



Quantitative isomeric analysis of fructose, galactose, and glucose was achieved using electrospray ionization and trimeric ion dissociation with data analysis by the kinetic method. Several L-amino acids and divalent metal cations were tested to select the best systems for isomeric distinction and quantitation of each monosaccharide. High discrimination could be achieved for most tested systems, and serine/Cu2+ and aspartic acid/Mn2+ were selected for quantitative analysis due to their ability to strongly distinguish the three analytes and to allow long-term reproducible measuring conditions. Accurate quantitative results were obtained for all isomers using three-point corrected calibration curves, which account for the competition effects evidenced to occur between sugars for the formation of the trimeric complexes. As a result, the relative proportion of one isomer in the liquid and in the gas phase depends on the sugar mixture composition. However, for a given reference/metal system, the extent of competition effects was shown to be constant within a given pair of sugars. The correction factors could thus be established based on data obtained from binary mixtures and successfully used for ternary sample analysis.

Supplementary material

13361_2011_210100060_MOESM1_ESM.doc (336 kb)
Supplementary material, approximately 344 KB.


  1. 1.
    Oppenheimer, S. B. Cancer: A Biological and Clinical Introduction. Pearson: Boston, 2004, pp 39–70.Google Scholar
  2. 2.
    Oppenheimer, S. B. Cellular Basis of Cancer Metastasis: A Review of Fundamentals and New Advances. Acta HistoChem. 2006, 108, 327–334.CrossRefGoogle Scholar
  3. 3.
    Oppenheimer, S. B.; Alvarez, M.; Nnoli, J. Carbohydrate-Based Experimental Therapeutics for Cancer, HIV/AIDS, and Other Diseases. Acta HistoChem. 2008, 110, 6–13.CrossRefGoogle Scholar
  4. 4.
    De Clercq, E. Antiviral Agents Active Against Influenza A Viruses. Nat. Rev. Drug Discov 2006, 5, 1015–1025.CrossRefGoogle Scholar
  5. 5.
    Kilcoyne, M.; Joshi, L. Carbohydrates in Therapeutics. Cardiovasc. Hematol. Agents Med. Chem. 2007, 5, 186–197.CrossRefGoogle Scholar
  6. 6.
    Simerska, P.; Abdel-Aal, A. B. M.; Fujita, Y.; Batzloff, M. R.; Good, M. F.; Toth, I. Synthesis and In Vivo Studies of Carbohydrate-Based Vaccines Against Group A Streptococcus. Biopolymers 2008, 90, 611–616.CrossRefGoogle Scholar
  7. 7.
    Masuda, T.; Kitahara, K.; Aikawa, Y.; Arai, S. High-Performance Liquid Chromatographic Separation of Carbohydrates on a Stationary Phase Prepared from Polystyrene-Based Resin and Novel Amines. J. Chromatogr. A 2002, 961, 89–96.CrossRefGoogle Scholar
  8. 8.
    Agblevor, F. A.; Hames, B. R.; Schell, D.; Chum, H. L. Analysis of Biomass Sugars Using a Novel HPLC Method. Appl. Biochem. Biotechnol 2007, 136, 309–326.CrossRefGoogle Scholar
  9. 9.
    Menges, R. A.; Armstrong, D. W. Chromatographical Optical Resolution on Polysaccharide Carbamate Phases. In Chiral Separations by Liquid Chromatography. Vol 471, Ahuja, S., Ed.; American Chemical Society: Washington, DC, 1991; pp 67–100.CrossRefGoogle Scholar
  10. 10.
    Zhu, X. Y.; Sato, T. The Distinction of Underivatized Monosaccharides Using Electrospray Ionization Ion Trap Mass Spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 191–198.CrossRefGoogle Scholar
  11. 11.
    Gaucher, S. P.; Leary, J. A. Stereochemical Differentiation of Mannose, Glucose, Galactose, and Talose Using Zinc(II) Diethylenetriamine and ESI-Ion Trap Mass Spectrometry. Anal. Chem. 1998, 70, 3009–3014.CrossRefGoogle Scholar
  12. 12.
    Salpin, J. Y.; Tortajada, J. Structural Characterization of Hexoses and Pentoses Using Lead Cationization: An Electrospray Ionization and Tandem Mass Spectrometric Study. J. Mass Spectrom. 2002, 37, 379–388.CrossRefGoogle Scholar
  13. 13.
    March, R. E.; Stadey, C. J. A Tandem Mass Spectrometric Study of Saccharides at High Mass Resolution. Rapid Commun. Mass Spectrom. 2005, 19, 805–812.CrossRefGoogle Scholar
  14. 14.
    Augusti, D. V.; Carazza, F.; Augusti, R.; Tao, W. A.; Cooks, R. G. Quantitative Chiral Analysis of Sugars by Electrospray Ionization Tandem Mass Spectrometry Using Modified Amino Acids as Chiral Reference Compounds. Anal. Chem. 2002, 74, 3458–3462.CrossRefGoogle Scholar
  15. 15.
    Tao, W. A.; Cooks, R. G. Chiral Analysis by MS. Anal. Chem. 2003, 75, 25A-31A.CrossRefGoogle Scholar
  16. 16.
    Tao, W. A.; Wu, L. M.; Cooks, R. G. Differentiation and Quantitation of Isomeric Dipeptides by Low-Energy Dissociation of Copper(II)-Bound Complexes. J. Am. Soc. Mass Spectrom. 2001, 12, 490–496.CrossRefGoogle Scholar
  17. 17.
    Wu, L. M.; Lemr, K.; Aggerholm, T.; Cooks, R. G. Recognition and Quantification of Binary and Ternary Mixtures of Isomeric Peptides by the Kinetic Method: Metal Ion and Ligand Effects on the Dissociation of Metal-Bound Complexes. J. Am. Soc. Mass Spectrom. 2003, 14, 152–160.CrossRefGoogle Scholar
  18. 18.
    Wu, L. M.; Meurer, E. C.; Young, B.; Yang, P. X.; Eberlin, M. N.; Cooks, R. G. Isomeric Differentiation and Quantification of □, β-Amino Acid-Containing Tripeptides by the Kinetic Method: Alkali Metal-Bound Dimeric Cluster Ions. Int. J. Mass Spectrom. 2004, 231, 103–111.CrossRefGoogle Scholar
  19. 19.
    Schug, K. A.; Lindner, W.; Lemr, K. Isomeric Discrimination of Arginine-Containing Dipeptides Using Electrospray Ionization-Ion Trap Mass Spectrometry and the Kinetic Method. J. Am. Soc. Mass Spectrom. 2004, 15, 840–847.CrossRefGoogle Scholar
  20. 20.
    Hyyrylainen, A. R. M.; Pakarinen, J. M. H.; Fulop, F.; Vainiotalo, P. Diastereochemical Differentiation of Some Cyclic and Bicyclic β-Amino Acids, Via the Kinetic Method. J. Am. Soc. Mass Spectrom. 2009, 20, 34–41.CrossRefGoogle Scholar
  21. 21.
    Cooks, R. G.; Patrick, J. S.; Kotiaho, T.; McLuckey, S. A. Thermochemical Determinations by the Kinetic Method. Mass Spectrom. Rev. 1994, 13, 287–339.CrossRefGoogle Scholar
  22. 22.
    Cooks, R. G.; Wong, P. S. H. Kinetic Method of Making Thermochemical Determinations: Advances and Applications. Acc. Chem. Res. 1998, 31, 379–386.CrossRefGoogle Scholar
  23. 23.
    Tao, W. A.; Zhang, D. X.; Nikolaev, E. N.; Cooks, R. G. Copper(II)-Assisted Enantiomeric Analysis of D,L-Amino Acids Using the Kinetic Method: Chiral Recognition and Quantification in the Gas Phase. J. Am. Chem. Soc. 2000, 122, 10598–10609.CrossRefGoogle Scholar
  24. 24.
    Tao, W. A.; Gozzo, F. C.; Cooks, R. G. Mass Spectrometric Quantitation of Chiral Drugs by the Kinetic Method. Anal. Chem. 2001, 73, 1692–1698.CrossRefGoogle Scholar
  25. 25.
    Harvey, D. J. Ionization and Collision-Induced Fragmentation of N-Linked and Related Carbohydrates Using Divalent Canons. J. Am. Soc. Mass Spectrom. 2001, 12, 926–937.CrossRefGoogle Scholar
  26. 26.
    Cerda, B. A.; Wesdemiotis, C. The Relative Copper(I) Ion Affinities of Amino-Acids in the Gas Phase. J. Am. Chem. Soc. 1995, 117, 9734–9739.CrossRefGoogle Scholar
  27. 27.
    Wu, L. M.; Meurer, E. C.; Cooks, R. G. Chiral Morphing and Enantiomeric Quantification in Mixtures by Mass Spectrometry. Anal. Chem. 2004, 76, 663–671.CrossRefGoogle Scholar
  28. 28.
    Carroll, J. A.; Willard, D.; Lebrilla, C. B. Energetics of Cross-Ring Cleavages and Their Relevance to the Linkage Determination of Oligosaccharides. Anal. Chim. Acta. 1995, 307, 431–447.CrossRefGoogle Scholar
  29. 29.
    Smith, G.; Leary, J. A. Mechanistic Studies of Diastereomeric Nickel(II) N-Glycoside Complexes Using Tandem Mass Spectrometry. J. Am. Chem. Soc. 1998, 120, 13046–13056.CrossRefGoogle Scholar
  30. 30.
    Madhusudanan, K. P. Tandem Mass Spectra of Ammonium Adducts of Monosaccharides: Differentiation of Diastereomers. J. Mass Spectrom. 2006, 41, 1096–1104.CrossRefGoogle Scholar
  31. 31.
    Zhang, D. X.; Tao, W. A.; Cooks, R. G. Chiral Resolution of D- and L-Amino Acids by Tandem Mass Spectrometry of Ni(II)-Bound Trimeric Complexes. Int. J. Mass Spectrom. 2001, 204, 159–169.CrossRefGoogle Scholar
  32. 32.
    Wu, L. M.; Cooks, R. G. Chiral Analysis Using the Kinetic Method with Optimized Fixed Ligands: Applications to Some Antibiotics. Anal. Chem. 2003, 75, 678–684.CrossRefGoogle Scholar
  33. 33.
    Zhang, M. Y.; Kerns, E.; McConnell, O. Observation of Enantiomeric Formation of Trimeric Complex Ions [CuII(Phe)(Pro)2 − H]+ using ESI. Proceedings of the 51st ASMS Conference on Mass Spectrometry and Allied Topics; Montreal, Quebec, Canada, June 2003.Google Scholar
  34. 34.
    Lemr, K.; Ranc, V.; Frycak, P.; Bednar, P.; Sevcik, J. Chiral Analysis by Mass Spectrometry Using the Kinetic Method in Flow Systems. J. Mass Spectrom. 2006, 41, 499–506.CrossRefGoogle Scholar
  35. 35.
    Wu, L. M.; Tao, W. A.; Cooks, R. G. Kinetic Method for the Simultaneous Chiral Analysis of Different Amino Acids in Mixtures. J. Mass Spectrom. 2003, 38, 386–393.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2010

Authors and Affiliations

  1. 1.Spectrométries Appliquées à la Chimie StructuraleUniversités Aix-Marseille I, II, and III — CNRS, UMR 6264: Laboratoire Chimie ProvenceMarseilleFrance

Personalised recommendations