Spectral accuracy of molecular ions in an LTQ/Orbitrap mass spectrometer and implications for elemental composition determination

  • John C. L. ErveEmail author
  • Ming Gu
  • Yongdong Wang
  • William DeMaio
  • Rasmy E. Talaat


In addition to mass accuracy, the ability of a mass spectrometer to faithfully measure the isotopic distribution of an ion, defined as spectral accuracy, is also important. Although time-of-flight mass spectrometers are reported to possess high spectral accuracy capability compared with other mass spectrometers, the Orbitrap has not yet been investigated. Ten natural products (moxidectin, erythromycin, digoxin, rifampicin, amphotericin B, rapamycin, gramicidin S, cyclosporin A, vancomycin, and thiostrepton) ranging in molecular weight from 639 to 1663 Da were measured on an LTQ/Orbitrap mass spectrometer with resolving power settings of 7.5, 15, 30, 60, and 100 K. The difference in the observed profile isotope pattern compared with the theoretical calculation after peak shape calibration, denoted spectral error, was calculated using the program MassWorks (Cerno Bioscience, Danbury, CT, USA). Spectral errors were least at 7.5 K resolving power (≤3%) but exceeded 10% for some compounds at 100 K. The increasing spectral error observed at higher resolving power for compounds with complex fine structure might be explained by the phenomena of isotopic beat patterns as observed in FTICR. Several compounds with prominent doubly charged ions allowed comparison of spectral accuracies of singly-versus doubly-charged ions. When using spectral error to rank elemental compositions with formula constraints (C0–100H0–200N0–50O0–50Cl0–5S0–5) and a mass tolerance ≤2 parts-per-million, the correct formula was ranked first 35% of the time. However, spectral error considerations eliminated >99% of possible elemental formulas for compounds with molecular weight >900 Da.


Mass Error Moxidectin Thiostrepton Spectral Accuracy ORBITRAP Mass Spectrometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kind, T.; Fiehn, O. Seven Golden Rules for Heuristic Filtering of Molecular Formulas Obtained by Accurate Mass Spectrometry. BMC Bioinformatics 2007, 8, 105.CrossRefGoogle Scholar
  2. 2.
    Kind, T.; Fiehn, O. Metabolomic Database Annotations via Query of Elemental Compositions: Mass Accuracy is Insufficient Even at Less Than 1 ppm. BMC Bioinformatics 2006, 7, 234.CrossRefGoogle Scholar
  3. 3.
    Stoll, N.; Schmidt, E.; Thurow, K. Isotope Pattern Evaluation for the Reduction of Elemental Compositions Assigned to High-Resolution Mass Spectral Data from Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2006, 17, 1692–1699.CrossRefGoogle Scholar
  4. 4.
    Grange, A. H.; Donnelly, J. R.; Sovocool, G. W.; Brumley, W. C. Determination of Elemental Compositions from Mass Peak Profiles of the Molecular Ion (M) and the M+1 and M+2 Ions. Anal. Chem. 1996, 68, 553–560.CrossRefGoogle Scholar
  5. 5.
    Zweigenbaum, J. A.; Thurman, E. M.; Ferrer, I. (Agilent Technologies, Inc., USA). Application: Determination of Chemical Empirical Formulas of Unknown Compounds Using Accurate Ion Mass Measurement of All Isotopes. USA 2007, 1–16.Google Scholar
  6. 6.
    Amirav, A.; Alon, T. (Israel). Application: Mass Spectrometric Based Method for Sample Identification. USA 2006, 1–11.Google Scholar
  7. 7.
    Hobby, K.; Gallagher, R. T.; Caldwell, P.; Wilson, I. D. A New Approach to Aid the Characterization and Identification of Metabolites of a Model Drug; Partial Isotope Enrichment Combined with Novel Formula Elucidation Software. Rapid Commun. Mass Spectrom. 2009, 23, 219–227.CrossRefGoogle Scholar
  8. 8.
    Wang, Y.; Gu, M. PCT Int. Appl. (Cerno Bioscience LLC, USA). WO 2007; Vol. U.S. Patent 6,983,213, p 35.Google Scholar
  9. 9.
    Koester, C. (Bruker Daltonik GmbH, Germany). Application: GB GB, 1999, p 15.Google Scholar
  10. 10.
    Bristow, T.; Constantine, J.; Harrison, M.; Cavoit, F. Performance Optimization of a New-Generation Orthogonal-Acceleration Quadrupole-Time-of-Flight Mass Spectrometer. Rapid Commun. Mass Spectrom. 2008, 22, 1213–1222.CrossRefGoogle Scholar
  11. 11.
    Fernandez-de-Cossio, J.; Gonzalez, L. J.; Satomi, Y.; Betancourt, L.; Ramos, Y.; Huerta, V.; Besada, V.; Padron, G.; Minamino, N.; Takao, T. Automated Interpretation of Mass Spectra of Complex Mixtures by Matching of Isotope Peak Distributions. Rapid Commun. Mass Spectrom. 2004, 18, 2465–2472.CrossRefGoogle Scholar
  12. 12.
    Goodner, K. L.; Milgram, K. E.; Williams, K. R.; Watson, C. H.; Eyler, J. R. Quantitation of Ion Abundances in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1998, 9, 1204–1212.CrossRefGoogle Scholar
  13. 13.
    Gu, M.; Wang, Y.; Zhao, X. G.; Gu, Z. Accurate Mass Filtering of Ion Chromatograms for Metabolite Identification Using a Unit Mass Resolution Liquid Chromatography/Mass Spectrometry System. Rapid Commun. Mass Spectrom. 2006, 20, 764–770.CrossRefGoogle Scholar
  14. 14.
    Kuehl, D.; Wang, Y. The Role of Spectral Accuracy in Mass Spectrometry. LCGC North Am. 2007, 10, 12–16.Google Scholar
  15. 15.
    Wang, Y. (Cerno Bioscience LLC, USA). Computational Method and System for Mass Spectral Analysis. WO 2004/097581 A2, 2004, 1–63.Google Scholar
  16. 16.
    Wang, Y.; Kuehl, D. (Cerno Bioscience LLC, USA). A Self Calibration Approach for Mass Spectrometry. WO 2008/151153 A1, 2008, 1–28.Google Scholar
  17. 17.
    Yergey, J. A. A General Approach to Calculating Isotopic Distributions for Mass Spectrometry. Int. J. Mass Spectrom. Ion. Phys. 1983, 52, 337–349.CrossRefGoogle Scholar
  18. 18.
    Rockwood, A. L.; Van Orden, S. L.; Smith, R. D. Rapid Calculation of Isotope Distributions. Anal. Chem. 1995, 67, 2699–2704.CrossRefGoogle Scholar
  19. 19.
    Rockwood, A. L.; Van Orden, S. L.; Smith, R. D. Ultrahigh Resolution Isotope Distribution Calculations. Rapid Commun. Mass Spectrom. 1996, 10, 54–59.CrossRefGoogle Scholar
  20. 20.
    Makarov, A.; Denisov, E.; Kholomeev, A.; Balschun, W.; Lange, O.; Strupat, K.; Horning, S. Performance Evaluation of a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer. Anal. Chem. 2006, 78, 2113–2120.CrossRefGoogle Scholar
  21. 21.
    Perry, R. H.; Cooks, R. G.; Noll, R. J. Orbitrap Mass Spectrometry: Instrumentation, Ion Motion and Applications. Mass Spectrom. Rev. 2008, 27, 661–699.CrossRefGoogle Scholar
  22. 22.
    Olsen, J. V.; de Godoy, L. M. F.; Li, G.; Macek, B.; Mortensen, P.; Pesch, R.; Makarov, A.; Lange, O.; Horning, S.; Mann, M. Parts Per Million Mass Accuracy on an Orbitrap Mass Spectrometer via Lock Mass Injection into a C-Trap. Mol. Cell. Proteom. 2005, 4, 2010–2021.CrossRefGoogle Scholar
  23. 23.
    Erve, J. C. L.; DeMaio, W.; Talaat, R. E. Rapid Metabolite Identification with Sub Parts-Per-Million Mass Accuracy from Biological Matrices by Direct Infusion Nanoelectrospray Ionization After Clean-Up on a ZipTip and LTQ/Orbitrap Mass Spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 3015–3026.CrossRefGoogle Scholar
  24. 24.
    Bolt, H. M.; Remmer, H. Implication of Rifampicin-Quinone in the Irreversible Binding of Rifampicin to Macromolecules. Xenobiotica 1976, 6, 21–32.CrossRefGoogle Scholar
  25. 25.
    Mackay, J. P.; Gerhard, U.; Beauregard, D. A.; Maplestone, R. A.; Williams, D. H. Dissection of the Contributions toward Dimerization of Glycopeptide Antibiotics. J. Am. Chem. Soc. 1994, 116, 4573–4580.CrossRefGoogle Scholar
  26. 26.
    Bresson, J. A.; Anderson, G. A.; Bruce, J. E.; Smith, R. D. Improved Isotopic Abundance Measurements for High Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectra via Time-Domain Data Extraction. J. Am. Soc. Mass Spectrom. 1998, 9, 799–804.CrossRefGoogle Scholar
  27. 27.
    Hofstadler, S. A.; Bruce, J. E.; Rockwood, A. L.; Anderson, G. A.; Winger, B. E.; Smith, R. D. Isotopic Beat Patterns in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Implications for High Resolution Mass Measurements of Large Biopolymers. Int. J. Mass Spectrom. Ion Processes 1994, 132, 109–127.CrossRefGoogle Scholar
  28. 28.
    Easterling, M. L.; Amster, I. J.; van Rooij, G. J.; Heeren, R. M. A. Isotope Beating Effects in the Analysis of Polymer Distributions by Fourier Transform Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1999, 10, 1074–1082.CrossRefGoogle Scholar
  29. 29.
    Werlen, R. C. Effect of Resolution on the Shape of Mass Spectra of Proteins: Some Theoretical Considerations. Rapid Commun. Mass Spectrom. 1994, 8, 976–980.CrossRefGoogle Scholar
  30. 30.
    Wang, Y.; Prest, H. Accurate Mass Measurement on Real Chromatographic Time Scale with a Single Quadrupole Mass Spectrometer. Chromatography 2006, 27, 135–140.Google Scholar
  31. 31.
    Gordon, E. F.; Muddiman, D. C. Impact of Ion Cloud Densities on the Measurement of Relative Ion Abundances in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Experimental Observations of Coulombically Induced Cyclotron Radius Perturbations and Ion Cloud Dephasing Rates. J. Mass Spectrom. 2001, 36, 195–203.CrossRefGoogle Scholar
  32. 32.
    Farrar, T. C.; Elling, J. W.; Krahling, M. D. Application of Linear Prediction to Fourier Transform Ion Cyclotron Resonance Signals for Accurate Relative Ion Abundance Measurements. Anal. Chem. 1992, 64, 2770–2774.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • John C. L. Erve
    • 1
    Email author
  • Ming Gu
    • 2
  • Yongdong Wang
    • 2
  • William DeMaio
    • 1
  • Rasmy E. Talaat
    • 1
  1. 1.Drug Safety and MetabolismWyeth ResearchCollegevilleUSA
  2. 2.Cerno BioscienceDanburyUSA

Personalised recommendations