Desorption electrospray ionization mass spectrometry for monitoring the kinetics of Baeyer-Villiger solid-state organic reactions

  • Ying Xie
  • Li-Fang He
  • Shui-Chao Lin
  • Hai-Feng Su
  • Su-Yuan Xie
  • Rong-Bin Huang
  • Lan-Sun Zheng
Article

Abstract

Desorption electrospray ionization mass spectrometry (DESI-MS) has been used for monitoring solid-state organic reaction in ambient air, specifically the Baeyer-Villiger (BV) type reaction involving the oxidation of ketones (benzophenone or deoxybenzoin) by m-chloroperbenzoic acid (m-CPBA) in solid-state. The DESI mass spectra obtained at regular intervals during the BV reaction processes are featured, with the amount of ester products increasing as those of ketone reactants decrease. Quantitative analyses of relative intensities of the product, made to quantify the reaction degree of typical solid-state organic reaction (SSOR), show a precision with RSDs of around 5% to 12%, though the RSDs for direct analysis of intensities of the reactant or the product in the solid-state are obviously larger. The kinetics of the Baeyer-Villiger type reactions in solid-state are shown to be dramatically different, in reaction rate, kinetic curve, as well as concentration dependence, from those of the same reactions taking place in solution.

Supplementary material

13361_2011_201102087_MOESM1_ESM.doc (2.1 mb)
Supplementary material, approximately 2179 KB.

References

  1. 1.
    Takats, Z.; Wiseman, J. M.; Cologan, B.; Cooks, R. G. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306, 471–473.CrossRefGoogle Scholar
  2. 2.
    Cotte-Rodriguez, I.; Takats, Z.; Talaty, N.; Chen, H.; Cooks, R. G. Desorption Electrospray Ionization of Explosives on Surfaces: Sensitivity and Selectivity Enhancement by Reactive Desorption Electrospray Ionization. Anal. Chem. 2005, 77, 6755–6764.CrossRefGoogle Scholar
  3. 3.
    Chen, H.; Talaty, N. N.; Takats, Z.; Cooks, R. G. Desorption Electrospray Ionization Mass Spectrometry for High-Throughput Analysis of Pharmaceutical Samples in the Ambient Environment. Anal. Chem. 2005, 77, 6915–6927.CrossRefGoogle Scholar
  4. 4.
    Weston, D. J.; Bateman, R.; Wilson, I. D.; Wood, T. R.; Creaser, C. S. Direct Analysis of Pharmaceutical Drug Formulations Using Ion Mobility Spectrometry/Quadrupole-Time-of-Flight Mass Spectrometry Combined with Desorption Electrospray Ionization. Anal. Chem. 2005, 77, 7572–7580.CrossRefGoogle Scholar
  5. 5.
    Cooks, R. G.; Ouyang, Z.; Takats, Z.; Wiseman, J. M. Ambient Mass Spectrometry. Science 2006, 311, 1566–1570.CrossRefGoogle Scholar
  6. 6.
    Bereman, M. S.; Muddiman, D. C. Detection of Attomole Amounts of Analyte by Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) Determined Using Fluorescence Spectroscopy. J. Am. Soc. Mass Spectrom. 2007, 18, 1093–1096.CrossRefGoogle Scholar
  7. 7.
    Venter, A.; Nefliu, M.; Cooks, R. G. Ambient Desorption Ionization Mass Spectrometry. TrAC-Trends Anal. Chem. 2008, 27, 284–290.CrossRefGoogle Scholar
  8. 8.
    Sampson, J. S.; Hawkridge, A. M.; Muddiman, D. C. Construction of a Versatile High Precision Ambient Ionization Source for Direct Analysis and Imaging. J. Am. Soc. Mass Spectrom. 2008, 19, 1527–1534.CrossRefGoogle Scholar
  9. 9.
    Van Berkel, G. J.; Ford, M. J.; Deibel, M. A. Thin-Layer Chromatography and Mass Spectrometry Coupled Using Desorption Electrospray Ionization. Anal. Chem. 2005, 77, 1207–1215.CrossRefGoogle Scholar
  10. 10.
    Wiseman, J. M.; Ifa, D. R.; Song, Q.; Cooks, R. G. Tissue Imaging at Atmospheric Pressure Using Desorption Electrospray Ionization (DESI) Mass Spectrometry. Angew. Chem. Int. Ed. 2006, 45, 7188–7192.CrossRefGoogle Scholar
  11. 11.
    Ifa, D. R.; Manicke, N. E.; Dill, A. L.; Cooks, R. G. Latent Fingerprint Chemical Imaging by Mass Spectrometry. Science 2008, 321, 805.CrossRefGoogle Scholar
  12. 12.
    Chen, H.; Li, M.; Zhang, Y.-P.; Yang, X.; Lian, J.-J.; Chen, J.-M. Rapid Analysis of SVOC in Aerosols by Desorption Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19, 450–454.CrossRefGoogle Scholar
  13. 13.
    Miao, Z.; Chen, H. Direct Analysis of Liquid Samples by Desorption Electrospray Ionization-Mass Spectrometry (DESI-MS). J. Am. Soc. Mass. Spectrom. 2009, 20, 10–19.CrossRefGoogle Scholar
  14. 14.
    Cody, R. B.; Laramee, J. A.; Durst, H. D. Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 2005, 77, 2297–2302.CrossRefGoogle Scholar
  15. 15.
    Takats, Z.; Cotte-Rodriguez, I.; Talaty, N.; Chen, H.; Cooks, R. G. Direct, Trace Level Detection of Explosives on Ambient Surfaces by Desorption Electrospray Ionization Mass Spectrometry. Chem. Commun. 2005, 15, 1950–1952.CrossRefGoogle Scholar
  16. 16.
    Sampson, J. S.; Hawkridge, A. M.; Muddiman, D. C. Generation and Detection of Multiply-Charged Peptides and Proteins by Matrix-Assisted Laser Desorption Electrospray Ionization (MALDESI) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2006, 17, 1712–1716.CrossRefGoogle Scholar
  17. 17.
    Haapala, M.; Pol, J.; Saarela, V.; Arvola, V.; Kotiaho, T.; Ketola, R. A.; Franssila, S.; Kauppila, T. J.; Kostiainen, R. Desorption Atmospheric Pressure Photoionization. Anal. Chem. 2007, 79, 7867–7872.CrossRefGoogle Scholar
  18. 18.
    Shiea, J.; Huang, M.-Z.; HSu, H.-J.; Lee, C.-Y.; Yuan, C.-H.; Beech, I.; Sunner, J. Electrospray-Assisted Laser Desorption/Ionization Mass Spectrometry for Direct Ambient Analysis of Solids. Rapid Commun. Mass Spectrom. 2005, 19, 3701–3704.CrossRefGoogle Scholar
  19. 19.
    McEwen, C. N.; McKay, R. G.; Larsen, B. S. Analysis of Solids, Liquids, and Biological Tissues Using Solids Probe Introduction at Atmospheric Pressure on Commercial LC/MS Instruments. Anal. Chem. 2005, 77, 7826–7831.CrossRefGoogle Scholar
  20. 20.
    Toda, F. Solid State Organic Chemistry: Efficient Reactions, Remarkable Yields, and Stereoselectivity. Acc. Chem. Res. 1995, 28, 480–486.CrossRefGoogle Scholar
  21. 21.
    Kaupp, G. Organic Solid-State Reactions with 100% Yield. In Organic Solid State Reactions, Toda, F., Ed.; Springer-Verlag Berlin Heidelberg: New York, 2005, p 95.Google Scholar
  22. 22.
    Toda, F.; Yagi, M.; Kiyoshige, K. Baeyer-Villiger Reaction in the Solid State. J. Chem. Soc. 1988, 14, 958–959.Google Scholar
  23. 23.
    Michael Renz, B. M. 100 Years of Baeyer-Villiger Oxidations. Eur. J. Org. Chem. 1999, 1999, 737–750.CrossRefGoogle Scholar
  24. 24.
    Rastogi, R. P.; Singh, N. B.; Singh, R. P. Organic Solid-State Reaction. J. Solid State Chem. 1977, 20, 191–200.CrossRefGoogle Scholar
  25. 25.
    Tanaka, K.; Toda, F. Solvent-Free Organic Synthesis. Chem. Rev. 2000, 100, 1025–1074.CrossRefGoogle Scholar
  26. 26.
    Cave, G. W. V.; Raston, C. L.; Scott, J. L. Recent Advances in Solventless Organic Reactions: Towards Benign Synthesis with Remarkable Versatility. Chem. Commun. 2001, 2159–2169.Google Scholar
  27. 27.
    Epple, M.; Sankar, G.; Thomas, J. M. Solid-State Polymerization Reaction by Combined In-Situ X-ray Diffraction and X-ray Absorption Spectroscopy (XRD-EXAFS). Chem. Mater. 1997, 9, 3127–3131.CrossRefGoogle Scholar
  28. 28.
    Aliev, A. E.; Elizabe, L.; Kariuki, B. M.; Kirschnick, H.; Thomas, J. M.; Epple, M.; Harris, K. D. M. In Situ Monitoring of Solid-State Polymerization Reactions in Sodium Chloroacetate and Sodium Bromo acetate by 23Na and 13C Solid-State NMR Spectroscopy. Chem. Eur. J. 2000, 6, 1120–1126.CrossRefGoogle Scholar
  29. 29.
    de Miguel, Y. R.; Shearer, A. S. Infrared Spectroscopy in Solid-Phase Synthesis. Biotechnol. Bioeng. 2000, 71, 119–129.CrossRefGoogle Scholar
  30. 30.
    Nakamatsu, S.; Yoshizawa, K.; Toyota, S.; Toda, F.; Matijasic, I. Isolation of an Inclusion Complex of Naphthol and Its Benzoate as an Intermediate in the Solvent-Free Benzoylation Reaction of Naphthol. Org. Biomol. Chem. 2003, 1, 2231–2234.CrossRefGoogle Scholar
  31. 31.
    Ifa, D. R.; Manicke, N. E.; Rusine, A. L.; Cooks, R. G. Quantitative Analysis of Small Molecules by Desorption Electrospray Ionization Mass Spectrometry from Polytetrafluoroethylene Surfaces. Rapid Commun. Mass Spectrom. 2008, 22, 503–510.CrossRefGoogle Scholar
  32. 32.
    Pasilis, S. P.; Kertesz, V.; Van Berkel, G. J. Unexpected Analyte Oxidation during Desorption Electrospray Ionization-Mass Spectrometry. Anal. Chem. 2008, 80, 1208–1214.CrossRefGoogle Scholar
  33. 33.
    Rothenberg, G.; Downie, A. P.; Raston, C. L.; Scott, J. L. Understanding Solid/Solid Organic Reactions. J. Am. Chem. Soc. 2001, 123, 8701–8708.CrossRefGoogle Scholar
  34. 34.
    Upadhyay, S. K. Chemical Kinetics and Reaction Dynamics; Springer: New York 2006; pp. 83–88.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • Ying Xie
    • 1
  • Li-Fang He
    • 1
  • Shui-Chao Lin
    • 1
  • Hai-Feng Su
    • 1
  • Su-Yuan Xie
    • 1
  • Rong-Bin Huang
    • 1
  • Lan-Sun Zheng
    • 1
  1. 1.State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina

Personalised recommendations