The mass-mobility correlation redux: The conformational landscape of anhydrous biomolecules

Critical Insight

Abstract

Structural separations on the basis of gas-phase ion mobility-mass spectrometry are increasingly used for the analysis of complex biological samples. As a tool to elucidate biomolecular structure, ion mobility-mass spectrometry methods are unique in that direct molecular structural information is obtained for all resolved species, largely irrespective of the complexity of the sample. Computational approaches are used to interpret and discern structural details consistent with the empirical results. To a first approximation, correlations of mobility with mass allow for qualitative identification of the molecular class to which a particular species belongs. These correlations allow simultaneous characterization of different classes of biomolecules, which provides a means for combining omics measurements, such as lipidomics, proteomics, glycomics, and metabolomics, in the same analysis. Examination of the correlation of fine structure reveals that specific structural motifs, chemical functionality, chemical connectivity, and composition may also be determined, depending on the specific biomolecular class. Mapping the coarse and fine structure in ion mobility-mass spectrometry conformation space measurements provides an atlas for interpretation and discovery in complicated spectra.

References

  1. 1.
    Röntgen, W. C. On a New Kind of Rays. Nature. 1896, 53, 274–276.Google Scholar
  2. 2.
    Rutherford, E. Velocity and Rate of Recombination of the Ions of Gases Exposed to Röntgen Radiation. Phil. Mag. 1897, 44, 422–440.CrossRefGoogle Scholar
  3. 3.
    Thomson, J. J. Rays of Positive Electricity. Proc. Royal Soc. 1913, A89, 1–20.CrossRefGoogle Scholar
  4. 4.
    Carr, T. W., Ed. Plasma Chromatography; Plenum Press: New York, 1984.Google Scholar
  5. 5.
    Bowers, M. T.; Kemper, P. R.; von Helden, G.; van Koppen, P. A. M. Gas-Phase Ion Chromatography: Transition Metal State Selection and Carbon Cluster Formation. Science 1993, 260, 1446–1451.CrossRefGoogle Scholar
  6. 6.
    Borsdorf, H.; Eiceman, G. A. Ion Mobility Spectrometry: Principles and Applications. Appl. Spectrosc. Rev. 2006, 41, 323–375.CrossRefGoogle Scholar
  7. 7.
    Eiceman, G. A.; Karpas, Z. Introduction to Ion Mobility Spectrometry. In Ion Mobility Spectrometry, 2nd ed.; CRC Press: Boca Raton, 2005; pp. 3–36.CrossRefGoogle Scholar
  8. 8.
    Barnes, W. S.; Martin, D. W.; McDaniel, E. W. Mass Spectrographic Identification of the Ion Observed in Hydrogen Mobility Experiments. Phys. Rev. Lett. 1961, 6, 110–111.CrossRefGoogle Scholar
  9. 9.
    McAfee, K. B. Jr.; Edelson, D. Identification and Mobility of Ions in a Townsend Discharge by Time-Resolved Mass Spectrometry. Proc. Phys. Soc. London. 1963, 81, 382–384.CrossRefGoogle Scholar
  10. 10.
    Karasek, F. W.; Kilpatrick, W. D.; Cohen, M. J. Qualitative Studies of Trace Constituents by Plasma Chromatography. Anal. Chem. 1971, 43, 1441–1447.CrossRefGoogle Scholar
  11. 11.
    Karasek, F. W.; Tatone, O. S. Plasma Chromatography of the Monohalogenated Benzenes. Anal. Chem. 1972, 44, 1758–1763.CrossRefGoogle Scholar
  12. 12.
    Griffin, G. W.; Dzidic, I.; Carroll, D. I.; Stillwell, R. N.; Horning, E. C. Ion Mass Assignments Based on Mobility Measurements—Validity of Plasma Chromatographic Mass Mobility Correlations. Anal. Chem. 1973, 45, 1204–1209.CrossRefGoogle Scholar
  13. 13.
    McDaniel, E. W.; Mason, E. A. The Mobility and Diffusion of Ions in Gases; John Wiley and Sons: New York, 1973.Google Scholar
  14. 14.
    Revercomb, H. E.; Mason, E. A. Theory of Plasma Chromatography/Gaseous Electrophoresis—A Review. Anal. Chem. 1975, 47, 970–983.CrossRefGoogle Scholar
  15. 15.
    Mason, E. A.; McDaniel, E. W. Transport Properties of Ions in Gases; John Wiley and Sons: New York, 1988.CrossRefGoogle Scholar
  16. 16.
    von Helden, G.; Wyttenbach, T.; Bowers, M. T. Conformation of Macromolecules in the Gas Phase: Use of Matrix-Assisted Laser Desorption Methods in Ion Chromatography. Science 1995, 267, 1483–1485.CrossRefGoogle Scholar
  17. 17.
    Wyttenbach, T.; von Helden, G.; Bowers, M. T. Gas-Phase Conformation of Biological Molecules: Bradykinin. J. Am. Chem. Soc. 1996, 118, 8355–8364.CrossRefGoogle Scholar
  18. 18.
    Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. Naked Protein Conformations: Cytochrome c in the Gas Phase. J. Am. Chem. Soc. 1995, 117, 10141–10142.CrossRefGoogle Scholar
  19. 19.
    Shelimov, K. B.; Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. Protein Structure in Vacuo: The Gas Phase Conformations of BPTI and Cytochrome. c. J. Am. Chem. Soc. 1997, 119, 2240–2248.CrossRefGoogle Scholar
  20. 20.
    Ruotolo, B. T.; Giles, K.; Campuzano, I.; Sandercock, A. M.; Bateman, R. H.; Robinson, C. V. Evidence for Macromolecular Rings in the Absence of Bulk Water. Science 2005, 310, 1658–1661.CrossRefGoogle Scholar
  21. 21.
    Ruotolo, B. T.; Hyung, S.-J.; Robinson, P. M.; Giles, K.; Bateman, R. H.; Robinson, C. V. Ion Mobility-Mass Spectrometry Reveals Long-Lived, Unfolded Intermediates in the Dissociation of Protein Complexes. Angew. Chem. Int. Ed. 2007, 46, 8001–8004.CrossRefGoogle Scholar
  22. 22.
    Ruotolo, B. T.; Benesch, J. L. P.; Sandercock, A. M.; Hyung, S.-J.; Robinson, C. V. Ion Mobility-Mass Spectrometry Analysis of Large Protein Complexes. Nat. Protocols 2008, 3, 1139–1152.CrossRefGoogle Scholar
  23. 23.
    Benesch, J. L. P. Collisional Activation of Protein Complexes: Picking Up the Pieces. J. Am. Soc. Mass Spectrom. 2009, 20, 341–348.CrossRefGoogle Scholar
  24. 24.
    Sali, A.; Glaeser, R.; Earnest, T.; Baumeister, W. From Words to Literature in Structural Proteomics. Nature 2003, 422, 216–225.CrossRefGoogle Scholar
  25. 25.
    Robinson, C. V.; Sali, A.; Baumeister, W. The Molecular Sociology of the Cell. Nature 2007, 450, 973–982.CrossRefGoogle Scholar
  26. 26.
    Fenn, L. S.; McLean, J. A. Biomolecular Structural Separations by Ion Mobility-Mass Spectrometry. Anal. Bioanal. Chem. 2008, 391, 905–909.CrossRefGoogle Scholar
  27. 27.
    Fenn, L. S.; Kliman, M.; Mahsut, A.; Zhao, S. R.; McLean, J. A. Characterizing Ion Mobility-Mass Spectrometry Conformation Space for the Analysis of Complex Biological Samples. Anal. Bioanal. Chem. 2009, 394, 235–244.CrossRefGoogle Scholar
  28. 28.
    Giddings, J. C. Two-Dimensional Separations: Concept and Promise. Anal. Chem. 1984, 56, 1258A-1270A.CrossRefGoogle Scholar
  29. 29.
    McLean, J. A.; Ruotolo, B. T.; Gillig, K. J.; Russell, D. H. Ion Mobility-Mass Spectrometry: A New Paradigm for Proteomics. Int. J. Mass Spectrom. 2005, 240, 301–315.CrossRefGoogle Scholar
  30. 30.
    Koomen, J. M.; Ruotolo, B. T.; Gillig, K. J.; McLean, J. A.; Russell, D. H.; Kang, M.; Dunbar, K. R.; Fuhrer, K.; Gonin, M.; Schultz, J. A. Oligonucleotide Analysis with MALDI-Ion Mobility-TOF-MS. Anal. Bioanal. Chem. 2002, 373, 612–617.CrossRefGoogle Scholar
  31. 31.
    Woods, A. S.; Ugarov, M.; Egan, T.; Koomen, J.; Gillig, K. J.; Fuhrer, K.; Gonin, M.; Schultz, J. A. Lipid/Peptide/Nucleotide Separation with MALDI-Ion Mobility-TOF-MS. Anal. Chem. 2004, 76, 2187–2195.CrossRefGoogle Scholar
  32. 32.
    McLean, J. A.; Tao, L.; Perkins, S.; McLean, J. R.; Russell, D. H. Multidimensional Proteomic Analysis of Escherichia coli. Whole Cell Lysates by HPLC-MALDI-Ion Mobility-MS: Extending Dynamic Range in Protein Analysis. In Proceedings of the 53rd ASMS Conference on Mass Spectrometry; Montreal, Canada, 2005.Google Scholar
  33. 33.
    Liu, X.; Plasencia, M.; Ragg, S.; Valentine, S. J.; Clemmer, D. E. Development of High Throughput Dispersive LC-Ion Mobility-TOF-MS Techniques for Analyzing the Human Plasma Proteome. Briefings Funct. Genomics Proteomics 2004, 3, 177–186.CrossRefGoogle Scholar
  34. 34.
    Valentine, S. J.; Plasencia, M. D.; Liu, X.; Krishnan, M.; Naylor, S.; Udseth, H. R.; Smith, R. D.; Clemmer, D. E. Toward Plasma Proteome Profiling with Ion Mobility-Mass Spectrometry. J. Proteome Res. 2006, 5, 2977–2984.CrossRefGoogle Scholar
  35. 35.
    Liu, X.; Valentine, S. J.; Plasencia, M. D.; Trimpin, S.; Naylor, S.; Clemmer, D. E. Mapping the Human Plasma Proteome by SCX-LC-IMS-MS. J. Am. Soc. Mass Spectrom. 2007, 18, 1249–1264.CrossRefGoogle Scholar
  36. 36.
    Myung, S.; Lee, Y. J.; Moon, M. H.; Taraszka, J.; Sowell, R.; Koeniger, S.; Hilderbrand, A. E.; Valentine, S. J.; Cherbas, L.; Cherbas, P.; Kaufmann, T. C.; Miller, D. F.; Mechref, Y.; Novotny, M. V.; Ewing, M. A.; Sporleder, C. R.; Clemmer, D. E. Development of High-Sensitivity Ion Trap Ion Mobility Spectrometry Time-of-Flight Techniques: A High-Throughput Nano-LC-IMS-TOF Separation of Peptides Arising from a Drosophila Protein Extract. Anal. Chem. 2003, 75, 5137–5145.CrossRefGoogle Scholar
  37. 37.
    Isailovic, D.; Kurulugama, R. T.; Plasencia, M. D.; Stokes, S. T.; Kyselova, Z.; Goldman, R.; Mechref, Y.; Novotny, M. V.; Clemmer, D. E. Profiling of Human Serum Glycans Associated with Liver Cancer and Cirrhosis by IMS-MS. J. Proteome Res. 2008, 7, 1109–1117.CrossRefGoogle Scholar
  38. 38.
    Liu, X.; Miller, B. R.; Rebec, G. V.; Clemmer, D. E. Protein Expression in the Striatum and Cortex Regions of the Brain for a Mouse Model of Huntington’s Disease. J. Proteome Res. 2007, 6, 3134–3142.CrossRefGoogle Scholar
  39. 39.
    Taraszka, J. A.; Kurulugama, R.; Sowell, R. A.; Valentine, S. J.; Koeniger, S. L.; Arnold, R. J.; Miller, D. F.; Kaufman, T. C.; Clemmer, D. E. Mapping the Proteome of Drosophila melanogaster: Analysis of Embryos and Adult Heads by LC-IMS-MS Methods. J. Proteome Res. 2005, 4, 1223–1237.CrossRefGoogle Scholar
  40. 40.
    Jackson, S. N.; Ugarov, M.; Egan, T.; Post, J. D.; Langlais, D.; Schultz, J. A.; Woods, A. S. MALDI-Ion Mobility-TOF-MS Imaging of Lipids in Rat Brain Tissue. J. Mass Spectrom. 2007, 42, 1093–1098.CrossRefGoogle Scholar
  41. 41.
    McLean, J. A.; Ridenour, W. B.; Caprioli, R. M. Profiling and Imaging of Tissues by Imaging Ion Mobility-Mass Spectrometry. J. Mass Spectrom. 2007, 42, 1099–1105.CrossRefGoogle Scholar
  42. 42.
    Gidden, J.; Baker, E. S.; Ferzoco, A.; Bowers, M. T. Structural Motifs of DNA Complexes in the Gas Phase. Int. J. Mass Spectrom. 2005, 240, 183–193.CrossRefGoogle Scholar
  43. 43.
    Baker, E. S.; Berstein, S. L.; Bowers, M. T. Structural Characterization of G-Quadruplexes in Deoxyguanosine Clusters Using Ion Mobility Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2005, 16, 989–997.CrossRefGoogle Scholar
  44. 44.
    Smargiasso, N.; Rosu, F.; Hsia, W.; Colson, P.; Baker, E. S.; Bowers, M. T.; De Pauw, E.; Gabelica, V. G. Quadruplex DNA Assemblies: Loop Length, Cation Identity, and Multimer Formation. J. Am. Chem. Soc. 2008, 130, 10208–10216.CrossRefGoogle Scholar
  45. 45.
    Ruotolo, B. T.; Verbeck, G. F.; Thomson, L. M.; Gillig, K. J.; Russell, D. H. Observation of Conserved Solution-Phase Secondary Structure in Gas-Phase Tryptic Peptides. J. Am. Chem. Soc. 2002, 124, 4214–4215.CrossRefGoogle Scholar
  46. 46.
    Wu, C.; Murray, M. M.; Bernstein, S. L.; Condron, M. M.; Bitan, G.; Shea, J.-E.; Bowers, M. T. The Structure of AB42 C-Terminal Fragments Probed by a Combined Experimental and Theoretical Study. J. Mol. Biol. 2009, 387, 492–501.CrossRefGoogle Scholar
  47. 47.
    Ruotolo, B. T.; Verbeck, G. V.; Thomson, L. M.; Woods, A. S.; Gillig, K. J.; Russell, D. H. Distinguishing Between Phosphorylated and Nonphosphorylated Peptides with Ion Mobility-Mass Spectrometry. J. Proteome Res. 2002, 1, 303–306.CrossRefGoogle Scholar
  48. 48.
    Thalassinos, K.; Grabenauer, M.; Slade, S. E.; Hilton, G. R.; Bowers, M. T.; Scrivens, J. H. Characterization of Phosphorylated Peptides Using Traveling Wave-Based and Drift Cell Ion Mobility Mass Spectrometry. Anal. Chem. 2009, 81, 248–254.CrossRefGoogle Scholar
  49. 49.
    Counterman, A. E.; Clemmer, D. E. Cis-trans Signatures of Proline-Containing Tryptic Peptides in the Gas Phase. Anal. Chem. 2002, 74, 1946–1951.CrossRefGoogle Scholar
  50. 50.
    Fenn, L. S., Goodwin, C. R., Bachmann, B. O., McLean, J. A., unpublished. (Manuscript in preparation for J. Am. Chem. Soc. 2009.)Google Scholar
  51. 51.
    Fenn, L. S.; McLean, J. A. Enhanced Carbohydrate Structural Selectivity in Ion Mobility-Mass Spectrometry Analyses by Boronic Acid Derivatization. Chem. Commun. 2008, 43, 5505–5507.CrossRefGoogle Scholar
  52. 52.
    Kliman, M.; Woods, A. S.; Schultz, J. A.; McLean, J. A. Fine Structure in Lipid Conformation Space: Study of Ion Mobility Mass Spectrometry Resolution of Sphingolipids and Glycerolipids. Proceedings of the 21st ASMS Conference; Sanibel, FL, 2009.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  1. 1.Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and EducationVanderbilt UniversityNashvilleUSA

Personalised recommendations