On the charge partitioning between c and z fragments formed after electron-capture induced dissociation of charge-tagged Lys-Lys and Ala-Lys dipeptide dications

  • Camilla Skinnerup Jensen
  • Anne I. S. Holm
  • Henning Zettergren
  • Jakob B. Overgaard
  • Preben Hvelplund
  • Steen Brøndsted Nielsen
Article

Abstract

Here we report on the charge partition between c and z fragments formed after femtosecond collisional electron-transfer from Cs atoms to charge-tagged peptide dications. Peptides chosen for study were Ala-Lys (AK) and Lys-Lys (KK) where one or both of the lysine ε-amino groups were trimethylated to provide one or two fixed charges. For peptides with only one charge tag, the other charge was obtained by protonation of an amino group. In some experiments the ammonium group was tagged by 18-crown-6-ether (CE). Since recombination energies decrease in the order: MeNH3+>NMe4+>MeNH3+(CE)>NMe4+(CE), it is possible to change the probability for the transferred electron to end up at either the N-terminal or the C-terminal residue by CE attachment. We find, however, that the individual recombination energies have little influence on the relative ratio between the yield of c and z ions as long as there are no mobile protons that can be transferred between the two fragments. Our results can be accounted for by the Utah-Washington model where the electron is captured into an amide π* orbital that weakens the N-Cα bond and causes its breakage, followed by proton, electron, or hydrogen transfer between the c and z fragments that stay together as an ion-molecule complex for some time. The data are also in accordance with the notion that an amide group competes with the charged groups for the electron. Electron capture by charged groups results in loss of small neutrals such as hydrogen and ammonia.

References

  1. 1.
    Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. Electron capture dissociation of multiply charged protein cations: A nonergodic process. J. Am. Chem. Soc. 1998, 120, 3265–3266.CrossRefGoogle Scholar
  2. 2.
    Zubarev, R. A. Reactions of polypeptide ions with electrons in the gas phase. Mass Spectrom. Rev. 2003, 22, 57–77.CrossRefGoogle Scholar
  3. 3.
    Sze, S. K.; Ge, Y.; Oh, H. B.; McLafferty, F. W. Plasma electron capture dissociation for the characterization of large proteins by top down mass spectrometry. Anal. Chem. 2003, 75, 1599–1603.CrossRefGoogle Scholar
  4. 4.
    Coon, J. J.; Syka, J. E. P.; Schwartz, J. C.; Shabanowitz, J.; Hunt, D. F. Anion dependence in the partitioning between proton and electron transfer in ion/ion reactions. Int. J. Mass Spectrom. 2004, 236, 33–42.CrossRefGoogle Scholar
  5. 5.
    Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9528–9533.CrossRefGoogle Scholar
  6. 6.
    Gunawardena, H. P.; He, M.; Chrisman, P. A.; Pitteri, S. J.; Hogan, J. M.; Hodges, B. D. M.; McLuckey, S. A. Electron transfer versus proton transfer in gas-phase ion/ion reactions of polyprotonated peptides. J. Am. Chem. Soc. 2005, 127, 12627–12639.CrossRefGoogle Scholar
  7. 7.
    Pitteri, S. J.; Chrisman, P. A.; Hogan, J. M.; McLuckey, S. A. Electron transfer ion/ion reactions in a three-dimensional quadrupole ion trap: Reactions of doubly and triply protonated peptides with SO2 center dot. Anal. Chem. 2005, 77, 1831–1839.CrossRefGoogle Scholar
  8. 8.
    Srikanth, R.; Wilson, J.; Bridgewater, J. D.; Numbers, J. R.; Lim, J.; Olbris, M. R.; Kettani, A.; Vachet, R. W. Improved sequencing of oxidized cysteine and methionine containing peptides using electron transfer dissociation. J. Am. Soc. Mass Spectrom. 2007, 18, 1499–1506.CrossRefGoogle Scholar
  9. 9.
    Breuker, K.; Oh, H. B.; Horn, D. M.; Cerda, B. A.; McLafferty, F. W. Detailed unfolding and folding of gaseous ubiquitin ions characterized by electron capture dissociation. J. Am. Chem. Soc. 2002, 124, 6407–6420.CrossRefGoogle Scholar
  10. 10.
    Turecek, F. N-Cα bond dissociation energies and kinetics in amide and peptide radicals: Is the dissociation a non-ergodic process?. J. Am. Chem. Soc. 2003, 125, 5954–5963.CrossRefGoogle Scholar
  11. 11.
    Breuker, K.; Oh, H. B.; Lin, C.; Carpenter, B. K.; McLafferty, F. W. Nonergodic and conformational control of the electron capture dissociation of protein cations. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 14011–14016.CrossRefGoogle Scholar
  12. 12.
    Jones, J. W.; Sasaki, T.; Goodlett, D. R.; Turecek, F. Electron capture in spin-trap capped peptides: An experimental example of ergodic dissociation in peptide cation-radicals. J. Am. Soc. Mass Spectrom. 2007, 18, 432–444.CrossRefGoogle Scholar
  13. 13.
    Turecek, F.; Syrstad, E. A.; Seymour, J. L.; Chen, X. H.; Yao, C. X. Peptide cation-radicals: A computational study of the competition between peptide N-Cα, bond cleavage and loss of the side chain in the [GlyPhe-NH2+2H] cation-radical. J. Mass Spectrom. 2003, 38, 1093–1104.CrossRefGoogle Scholar
  14. 14.
    Syrstad, E. A.; Turecek, F. Toward a general mechanism of electron capture dissociation. J. Am. Soc. Mass Spectrom. 2005, 16, 208–224.CrossRefGoogle Scholar
  15. 15.
    Anusiewicz, W.; Berdys-Kochanska, J.; Simons, J. Electron attachment step in electron capture dissociation (ECD) and electron transfer dissociation (ETD). J. Phys. Chem. A. 2005, 109, 5801–5813.CrossRefGoogle Scholar
  16. 16.
    Sobczyk, M.; Anusiewicz, W.; Berdys-Kochanska, J.; Sawicka, A.; Skurski, P.; Simons, J. Coulomb-assisted dissociative electron attachment: Application to a model peptide. J. Phys. Chem. A. 2005, 109, 250–258.CrossRefGoogle Scholar
  17. 17.
    Sawicka, A.; Skurski, P.; Hudgins, R. R.; Simons, J. Model calculations relevant to disulfide bond cleavage via electron capture influenced by positively charged groups. J. Phys. Chem. B. 2003, 107, 13505–13511.CrossRefGoogle Scholar
  18. 18.
    Sawicka, A.; Anusiewicz, I.; Skurski, P.; Simons, J. Dipole-bound anions supported by charge-transfer interaction: Anionic states of HnF3-nN-→ BH3 and H3N-→ BHnF3-n (n=0, 1, 2, 3). Int. J. Quant. Chem. 2003, 92, 367–375.CrossRefGoogle Scholar
  19. 19.
    Chamot-Rooke, J.; Malosse, C.; Frison, G.; Turecek, F. Electron capture in charge-tagged peptides: Evidence for the role of excited electronic states. J. Am. Soc. Mass Spectrom. 2007, 18, 2146–2161.CrossRefGoogle Scholar
  20. 20.
    Turecek, F.; Jones, J. W.; Holm, A. I. S.; Panja, S.; Brøndsted Nielsen, S.; Hvelplund, P. Transition metals as electron traps: I. Structures, energetics, electron capture, and electron-transfer-induced dissociations of ternary copper-peptide complexes in the gas phase. J. Mass Spectrom. 2009, 44, 707–724.CrossRefGoogle Scholar
  21. 21.
    Chung, T. W.; Turecek, F. Electronic properties of charge-tagged peptides upon electron capture. Eur. J. Mass Spectrom. 2008, 14, 367–378.CrossRefGoogle Scholar
  22. 22.
    Kjeldsen, F.; Savitski, M. M.; Adams, C. M.; Zubarev, R. A. Determination of the location of positive charges in gas-phase polypeptide polycations by tandem mass spectrometry. Int. J. Mass Spectrom. 2006, 252, 204–212.CrossRefGoogle Scholar
  23. 23.
    Turecek, F.; Chen, X. H.; Hao, C. T. Where does the electron go?: Electron distribution and reactivity of peptide cation radicals formed by electron transfer in the gas phase. J. Am. Chem. Soc. 2008, 130, 8818–8833.CrossRefGoogle Scholar
  24. 24.
    Kruger, N. A.; Zubarev, R. A.; Horn, D. M.; McLafferty, F. W. Electron capture dissociation of multiply charged peptide cations. Int. J. Mass Spectrom. 1999, 187, 787–793.CrossRefGoogle Scholar
  25. 25.
    Zubarev, R. A.; Horn, D. M.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A.; Lewis, M. A.; Carpenter, B. K.; McLafferty, F. W. Electron capture dissociation for structural characterization of multiply charged protein cations. Anal. Chem. 2000, 72, 563–573.CrossRefGoogle Scholar
  26. 26.
    Crizer, D. M.; McLuckey, S. A. Electron transfer dissociation of amide nitrogen methylated polypeptide cations. J. Am. Soc. Mass Spectrom. 2009, in press.Google Scholar
  27. 27.
    Lin, C.; Cournoyer, J. J.; O’Connor, P. B. Probing the gas-phase folding kinetics of peptide ions by IR activated DR-ECD. J. Am. Soc. Mass Spectrom. 2008, 19, 780–789.CrossRefGoogle Scholar
  28. 28.
    Mihalca, R.; Kleinnijenhuis, A. J.; McDonnell, L. A.; Heck, A. J. R.; Heeren, R. M. A. Electron capture dissociation at low temperatures reveals selective dissociations. J. Am. Soc. Mass Spectrom. 2004, 15, 1869–1873.CrossRefGoogle Scholar
  29. 29.
    Robinson, E. W.; Leib, R. D.; Williams, E. R. The role of conformation on electron capture dissociation of ubiquitin. J. Am. Soc. Mass Spectrom. 2006, 17, 1469–1479.CrossRefGoogle Scholar
  30. 30.
    Ehlerding, A.; Jensen, C. S.; Wyer, J. A.; Holm, A. I. S.; Jørgensen, P.; Kadhane, U.; Larsen, M. K.; Panja, S.; Poully, J. C.; Worm, E. S.; Zettergren, H.; Hvelplund, P.; Brøndsted Nielsen, S. Influence of temperature and crown ether complex formation on the charge partitioning between z and c fragments formed after electron capture by small peptide dications. Int. J. Mass Spectrom. 2009, 282, 21–27.CrossRefGoogle Scholar
  31. 31.
    Zubarev, R. A.; Kruger, N. A.; Fridriksson, E. K.; Lewis, M. A.; Horn, D. M.; Carpenter, B. K.; McLafferty, F. W. Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity. J. Am. Chem. Soc. 1999, 121, 2857–2862.CrossRefGoogle Scholar
  32. 32.
    O’Connor, P. B.; Lin, C.; Cournoyer, J. J.; Pittman, J. L.; Belyayev, M.; Budnik, B. A. Long-lived electron capture dissociation product ions experience radical migration via hydrogen abstraction. J. Am. Soc. Mass Spectrom. 2006, 17, 576–585.CrossRefGoogle Scholar
  33. 33.
    Savitski, M. M.; Kjeldsen, F.; Nielsen, M. L.; Zubarev, R. A. Hydrogen rearrangement to and from radical z fragments in electron capture dissociation of peptides. J. Am. Soc. Mass Spectrom. 2007, 18, 113–120.CrossRefGoogle Scholar
  34. 34.
    Leymarie, N.; Costello, C. E.; O’Connor, P. B. Electron capture dissociation initiates a free radical reaction cascade. J. Am. Chem. Soc. 2003, 125, 8949–8958.CrossRefGoogle Scholar
  35. 35.
    Siu, C. K.; Ke, Y.; Orlova, G.; Hopkinson, A. C.; Siu, K. W. M. Dissociation of the N-Cα bond and competitive formation of the [z (n) − H] and [c (n) +2H]+ product ions in radical peptide ions containing tyrosine and tryptophan: The influence of proton affinities on product formation. J. Am. Soc. Mass Spectrom. 2008, 19, 1799–1807.CrossRefGoogle Scholar
  36. 36.
    Rand, K. D.; Adams, C. M.; Zubarev, R. A.; Jørgensen, T. J. D. Electron capture dissociation proceeds with a low degree of intramolecular migration of peptide amide hydrogens. J. Am. Chem. Soc. 2008, 130, 1341–1349.CrossRefGoogle Scholar
  37. 37.
    Bakken, V.; Helgaker, T.; Uggerud, E. Models of fragmentations induced by electron attachment to protonated peptides. Eur. J. Mass Spectrom. 2004, 10, 625–638.CrossRefGoogle Scholar
  38. 38.
    Holm, A. I. S.; Hvelplund, P.; Kadhane, U.; Larsen, M. K.; Liu, B.; Brøndsted Nielsen, S.; Panja, S.; Pedersen, J. M.; Skrydstrup, T.; Støchkel, K.; Williams, E. R.; Worm, E. S. On the mechanism of electron-capture-induced dissociation of peptide dications from N-15-labeling and crown-ether complexation. J. Phys. Chem. A. 2007, 111, 9641–9643.CrossRefGoogle Scholar
  39. 39.
    Chakraborty, T.; Holm, A. I. S.; Hvelplund, P.; Brøndsted Nielsen, S.; Poully, J. C.; Worm, E. S.; Williams, E. R. On the survival of peptide cations after electron capture: Role of internal hydrogen bonding and microsolvation. J. Am. Soc. Mass Spectrom. 2006, 17, 1675–1680.CrossRefGoogle Scholar
  40. 40.
    Prell, J. S.; O’Brien, J. T.; Holm, A. I. S.; Leib, R. D.; Donald, W. A.; Williams, E. R. Electron capture by a hydrated gaseous peptide: Effects of water on fragmentation and molecular survival. J. Am. Chem. Soc. 2008, 130, 12680–12689.CrossRefGoogle Scholar
  41. 41.
    Zettergren, H.; Adoui, L.; Bernigaud, V.; Cederquist, H.; Haag, N.; Holm, A. I. S.; Huber, B. A.; Hvelplund, P.; Johansson, H.; Kadhane, U.; Larsen, M. K.; Liu, B.; Manil, B.; Brøndsted Nielsen, S.; Panja, S.; Rangama, J.; Reinhed, P. R.; Schmidt, T.; Støchkel, K. Electron-capture-induced dissociation of microsolvated di- and tripeptide monocations: Elucidation of fragmentation channels from measurements of negative ions. Chem. Phys. Chem. 2009, 10, 1619–1623.Google Scholar
  42. 42.
    Iavarone, A. T.; Paech, K.; Williams, E. R. Effects of charge state and cationizing agent on the electron capture dissociation of a peptide. Anal. Chem. 2004, 76, 2231–2238.CrossRefGoogle Scholar
  43. 43.
    Liu, H.; Hakansson, K. Electron capture dissociation of tyrosine O-sulfated peptides complexed with divalent metal cations. Anal. Chem. 2006, 78, 7570–7576.CrossRefGoogle Scholar
  44. 44.
    Liu, H. C.; Hakansson, K. Divalent metal ion-peptide interactions probed by electron capture dissociation of trications. J. Am. Soc. Mass Spectrom. 2006, 17, 1731–1741.CrossRefGoogle Scholar
  45. 45.
    Frison, G.; van der Rest, G.; Turecek, F.; Besson, T.; Lemaire, J.; Maitre, P.; Chamot-Rooke, J. Structure of electron-capture dissociation fragments from charge-tagged peptides probed by tunable infrared multiple photon dissociation. J. Am. Chem. Soc. 2008, 130, 14916–14917.CrossRefGoogle Scholar
  46. 46.
    Li, X. J.; Cournoyer, J. J.; Lin, C.; O’Connor, P. B. The effect of fixed charge modifications on electron capture dissociation. J. Am. Soc. Mass Spectrom. 2008, 19, 1514–1526.CrossRefGoogle Scholar
  47. 47.
    Xia, Y.; Gunawardena, H. P.; Erickson, D. E.; McLuckey, S. A. Effects of cation charge-site identity and position on electron-transfer dissociation of polypeptide cations. J. Am. Chem. Soc. 2007, 129, 12232–12243.CrossRefGoogle Scholar
  48. 48.
    Fung, Y. M. E.; Liu, H. C.; Chan, T. W. D. Electron capture dissociation of peptides metalated with alkaline-earth metal ions. J. Am. Soc. Mass Spectrom. 2006, 17, 757–771.CrossRefGoogle Scholar
  49. 49.
    Chung, T. W.; Turecek, F. Selecting fixed-charge groups for electron-based peptide dissociations—a computational study of pyridinium tags. Int. J. Mass Spectrom. 2008, 276, 127–135.CrossRefGoogle Scholar
  50. 50.
    Chamot-Rooke, J.; van der Rest, G.; Dalleu, A.; Bay, S.; Lemoine, J. The combination of electron capture dissociation and fixed charge derivatization increases sequence coverage for O-glycosylated and O-phosphorylated peptides. J. Am. Soc. Mass Spectrom. 2007, 18, 1405–1413.CrossRefGoogle Scholar
  51. 51.
    Gunawardena, H. P.; Gorenstein, L.; Erickson, D. E.; Xia, Y.; McLuckey, S. A. Electron transfer dissociation of multiply protonated and fixed charge disulfide linked polypeptides. Int. J. Mass Spectrom. 2007, 265, 130–138.CrossRefGoogle Scholar
  52. 52.
    Hvelplund, P.; Liu, B.; Brøndsted Nielsen, S.; Tomita, S. Electron capture induced dissociation of peptide dications. Int. J. Mass Spectrom. 2003, 225, 83–87.CrossRefGoogle Scholar
  53. 53.
    Bernigaud, V.; Cederquist, H.; Haag, N.; Holm, A. I. S.; Huber, B. A.; Hvelplund, P.; Kadhane, U.; Larsen, M. K.; Manil, B.; Brøndsted Nielsen, S.; Panja, S.; Ptasinska, S.; Rangama, J.; Reinhed, P.; Schmidt, H. T.; Streletskii, A. V.; Støchkel, K.; Worm, E. S.; Zettergren, H. Electron capture-induced dissociation of AK dipeptide dications: Influence of ion velocity, crown-ether complexation, and collision gas. Int. J. Mass Spectrom. 2008, 276, 77–81.CrossRefGoogle Scholar
  54. 54.
    Boltalina, O. V.; Hvelplund, P.; Jørgensen, T. J. D.; Larsen, M. C.; Larsson, M. O.; Sharoitchenko, D. A. Electron capture by fluorinated fullerene anions in collisions with Xe atoms. Phys. Rev. A. 2000, 62, 023202.CrossRefGoogle Scholar
  55. 55.
    Larsson, M. O.; Hvelplund, P.; Larsen, M. C.; Shen, H.; Cederquist, H.; Schmidt, H. T. Electron capture and energy loss in similar to 100 keV collisions of atomic and molecular ions on C-60. Int. J. Mass Spectrom. 1998, 177, 51–62.CrossRefGoogle Scholar
  56. 56.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, J.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Strattman, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Apprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B05; Gaussian, Inc.: Pittsburgh, PA, 2003.Google Scholar
  57. 57.
    Becke, A. D. Density-Functional Thermochemistry: III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652.CrossRefGoogle Scholar
  58. 58.
    Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988, 37, 785.CrossRefGoogle Scholar
  59. 59.
    Turecek, F.; Syrstad, E. A. Mechanism and energetics of intramolecular hydrogen transfer in amide and peptide radicals and cation-radicals. J. Am. Chem. Soc. 2003, 125, 3353–3369.CrossRefGoogle Scholar
  60. 60.
    Yao, C. X.; Syrstad, E. A.; Turecek, F. Electron transfer to protonated β-alanine N-methylamide in the gas phase: An experimental and computational study of dissociation energetics and mechanisms. J. Phys. Chem. A. 2007, 111, 4167–4180.CrossRefGoogle Scholar
  61. 61.
    Beranova, S.; Wesdemiotis, C. The Unimolecular Chemistry of Quaternary Ammonium-Ions and Their Neutral Counterparts. Int. J. Mass Spectrom. Ion Processes. 1994, 134, 83–102.CrossRefGoogle Scholar
  62. 62.
    Shaffer, S. A.; Turecek, F. Hydrogentrimethylammonium—a marginally stable hypervalent radical. J. Am. Chem. Soc. 1994, 116, 8647–8653.CrossRefGoogle Scholar
  63. 63.
    Vasil’ev, Y. V.; Figard, B. J.; Voinov, V. G.; Barofsky, D. F.; Deinzer, M. L. Resonant electron capture by some amino acids and their methyl esters. J. Am. Chem. Soc. 2006, 128, 5506–5515.CrossRefGoogle Scholar
  64. 64.
    Hvelplund, P.; Liu, B.; Brøndsted Nielsen, S.; Panja, S.; Poully, J. C.; Støchkel, K. Electron capture induced dissociation of peptide ions: Identification of neutral fragments from secondary collisions with cesium vapor. Int. J. Mass Spectrom. 2007, 263, 66–70.CrossRefGoogle Scholar
  65. 65.
    Wyer, J. A.; Feketeova, L.; Brøndsted Nielsen, S.; O’Hair, R. A. J. Gas phase fragmentation of betaine and its clusters. Phys. Chem. Chem. Phys. 2009, doi:10.1039/B909653A.Google Scholar
  66. 66.
    Tsybin, Y. O.; He, H.; Emmett, M. R.; Hendrickson, C. L.; Marshall, A. G. Ion activation in electron capture dissociation to distinguish between N-terminal and C-terminal productions. Anal. Chem. 2007, 79, 7596–7602.CrossRefGoogle Scholar
  67. 67.
    Kadhane, U.; Andersen, J. U.; Ehlerding, A.; Hvelplund, P.; Kirketerp, M. B. S.; Lykkegaard, M. K.; Brøndsted Nielsen, S.; Panja, S.; Wyer, J. A.; Zettergren, H. Photodissociation of protonated tryptophan and alteration of dissociation pathways by complexation with crown ether. J. Chem. Phys. 2008, 129, 184304.CrossRefGoogle Scholar
  68. 68.
    Kadhane, U.; Perot, M.; Lucas, B.; Barat, M.; Fayeton, J. A.; Jouvet, C.; Ehlerding, A.; Kirketerp, M.-B. S.; Brøndsted Nielsen, S.; Wyer, J. A.; Zettergren, H. Photodissociation of protonated tryptamine and its supramolecular complex with 18-crown-6 ether: Dissociation times and channels, absorption spectra, and excited states calculations, unpublished.Google Scholar
  69. 69.
    Franski, R.; Gierczyk, B. Unusual complex between 18-Crown-6 and tetramethylammonium cation-detection by electrospray ionization mass spectrometry. J. Inclusion Phenom. Macrocyc. Chem. 2008, 62, 339–343.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • Camilla Skinnerup Jensen
    • 1
  • Anne I. S. Holm
    • 1
  • Henning Zettergren
    • 1
  • Jakob B. Overgaard
    • 1
  • Preben Hvelplund
    • 1
  • Steen Brøndsted Nielsen
    • 1
  1. 1.Department of Physics and AstronomyAarhus UniversityAarhus CDenmark

Personalised recommendations