Origin of supercharging in electrospray ionization of noncovalent complexes from aqueous solution



The use of m-nitrobenzyl alcohol (m-NBA) to enhance charging of noncovalent complexes formed by electrospray ionization from aqueous solutions was investigated. Addition of up to 1% m-NBA can result in a significant increase in the average charging of complexes, ranging from ∼13% for the homo-heptamer of NtrC4-RC (317 kDa; maximum charge state increases from 42+ to 44+) to ∼49% for myoglobin (17.6 kDa; maximum charge state increases from 9+ to 16+). Charge state distributions of larger complexes obtained from heated solutions to which no m-NBA was added are remarkably similar to those containing small amounts of m-NBA. Dissociation of the complexes through identical channels both upon addition of higher concentrations of m-NBA and heating is observed. These results indicate that the enhanced charging upon addition of m-NBA to aqueous electrospray solutions is a result of droplet heating owing to the high boiling point of m-NBA, which results in a change in the higher-order structure and/or dissociation of the complexes. For monomeric proteins and small complexes, the enhancement of charging is lower for heated aqueous solutions than from solutions with m-NBA because rapid folding of proteins from heated solutions that do not contain m-NBA can occur after the electrospray droplet is formed and is evaporatively cooled.

Supplementary material

13361_2011_201001933_MOESM1_ESM.doc (24 kb)
Supplementary material, approximately 24 KB.
13361_2011_201001933_MOESM2_ESM.jpg (581 kb)
Supplementary material, approximately 595 KB.


  1. 1.
    Wong, S. F.; Meng, C. K.; Fenn, J. B. Multiple Charging in Electrospray Ionization of Poly(Ethylene Glycols). J. Phys. Chem. 1988, 92, 546–550.CrossRefGoogle Scholar
  2. 2.
    McEwen, C. N.; Simonsick, W. J.; Larsen, B. S.; Ute, K.; Hatada, K. The Fundamentals of Applying Electrospray-Ionization Mass-Spectrometry to Low-Mass Poly(Methyl Methacrylate) Polymers. J. Am. Soc. Mass Spectrom. 1995, 6, 906–911.CrossRefGoogle Scholar
  3. 3.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass-Spectrometry of Large Biomolecules. Science. 1989, 246, 64–71.CrossRefGoogle Scholar
  4. 4.
    Wunschel, D. S.; Tolic, L. P.; Feng, B. B.; Smith, R. D. Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Analysis of Large Polymerase Chain Reaction Products. J. Am. Soc. Mass Spectrom. 2000, 11, 333–337.CrossRefGoogle Scholar
  5. 5.
    Loo, J. A. Studying Noncovalent Protein Complexes by Electrospray Ionization Mass Spectrometry. Mass Spectrom. Rev. 1997, 16, 1–23.CrossRefGoogle Scholar
  6. 6.
    Rostom, A. A.; Fucini, P.; Benjamin, D. R.; Juenemann, R.; Nierhaus, K. H.; Hartl, F. U.; Dobson, C. M.; Robinson, C. V. Detection and Selective Dissociation of Intact Ribosomes in a Mass Spectrometer. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 5185–5190.CrossRefGoogle Scholar
  7. 7.
    Heck, A. J. R.; van den Heuvel, R. H. H. Investigation of Intact Protein Complexes by Mass Spectrometry. Mass Spectrom. Rev. 2004, 23, 368–389.CrossRefGoogle Scholar
  8. 8.
    Benesch, J. L. P. Collisional Activation of Protein Complexes: Picking Up the Pieces. J. Am. Soc. Mass Spectrom. 2009, 20, 341–348.CrossRefGoogle Scholar
  9. 9.
    Siuzdak, G.; Bothner, B.; Yeager, M.; Brugidou, C.; Fauquet, C. M.; Hoey, K.; Chang, C. M. Mass Spectrometry and Viral Analysis. Chem. Biol. 1996, 3, 45–48.CrossRefGoogle Scholar
  10. 10.
    Fuerstenau, S. D.; Benner, W. H.; Thomas, J. J.; Brugidou, C.; Bothner, B.; Siuzdak, G. Mass Spectrometry of an Intact Virus. Angew. Chem. Int. Ed. 2001, 40, 542–544.CrossRefGoogle Scholar
  11. 11.
    Perry, R. H.; Cooks, R. G.; Noll, R. J. Orbitrap Mass Spectrometry: Instrumentation, Ion Motion, and Applications. Mass Spectrom. Rev. 2008, 27, 661–699.CrossRefGoogle Scholar
  12. 12.
    Marshall, A. G.; Hendrickson, C. L.; Jackson, G. S. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: A Primer. Mass Spectrom. Rev. 1998, 17, 1–35.CrossRefGoogle Scholar
  13. 13.
    Schaub, T. M.; Hendrickson, C. L.; Horning, S.; Quinn, J. P.; Senko, M. W.; Marshall, A. G. High-Performance Mass Spectrometry: Fourier Transform Ion Cyclotron Resonance at 14.5 Tesla. Anal. Chem. 2008, 80, 3985–3990.CrossRefGoogle Scholar
  14. 14.
    Han, X. M.; Jin, M.; Breuker, K.; McLafferty, F. W. Extending Top-Down Mass Spectrometry to Proteins with Masses Greater Than 200 Kilodaltons. Science 2006, 314, 109–112.CrossRefGoogle Scholar
  15. 15.
    Fenn, J. B. Ion Formation from Charged Droplets—Roles of Geometry, Energy, and Time. J. Am. Soc. Mass Spectrom. 1993, 4, 524–535.CrossRefGoogle Scholar
  16. 16.
    Kebarle, P. A Brief Overview of the Present Status of the Mechanisms Involved in Electrospray Mass Spectrometry. J. Mass Spectrom. 2000, 35, 804–817.CrossRefGoogle Scholar
  17. 17.
    Cech, N. B.; Enke, C. G. Practical Implications of Some Recent Studies in Electrospray Ionization Fundamentals. Mass Spectrom. Rev. 2001, 20, 362–387.CrossRefGoogle Scholar
  18. 18.
    Cech, N. B.; Enke, C. G. Effect of Affinity for Droplet Surfaces on the Fraction of Analyte Molecules Charged During Electrospray Droplet Fission. Anal. Chem. 2001, 73, 4632–4639.CrossRefGoogle Scholar
  19. 19.
    Iavarone, A. T.; Williams, E. R. Mechanism of Charging and Supercharging Molecules in Electrospray Ionization. J. Am. Chem. Soc. 2003, 125, 2319–2327.CrossRefGoogle Scholar
  20. 20.
    Grandori, R. Origin of the Conformation Dependence of Protein Charge-State Distributions in Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2003, 38, 11–15.CrossRefGoogle Scholar
  21. 21.
    Hogan, C. J.; Carroll, J. A.; Rohrs, H. W.; Biswas, P.; Gross, M. L. Charge Carrier Field Emission Determines the Number of Charges on Native State Proteins in Electrospray Ionization. J. Am. Chem. Soc. 2008, 130, 6926–6927.CrossRefGoogle Scholar
  22. 22.
    Chowdhury, S. K.; Katta, V.; Chait, B. T. Probing Conformational-Changes in Proteins by Mass-Spectrometry. J. Am. Chem. Soc. 1990, 112, 9012–9013.CrossRefGoogle Scholar
  23. 23.
    Konermann, L.; Douglas, D. J. Equilibrium Unfolding of Proteins Monitored by Electrospray Ionization Mass Spectrometry: Distinguishing Two-State from Multi-State Transitions. Rapid Commun. Mass Spectrom. 1998, 12, 435–442.CrossRefGoogle Scholar
  24. 24.
    Iavarone, A. T.; Jurchen, J. C.; Williams, E. R. Effects of Solvent on the Maximum Charge State and Charge State Distribution of Protein Ions Produced by Electrospray Ionization. J. Am. Soc. Mass Spectrom. 2000, 11, 976–985.CrossRefGoogle Scholar
  25. 25.
    Loo, R. R. O.; Smith, R. D. Proton-Transfer Reactions of Multiply-Charged Peptide and Protein Cations and Anions. J. Mass Spectrom. 1995, 30, 339–347.CrossRefGoogle Scholar
  26. 26.
    Williams, E. R. Proton Transfer Reactivity of Large Multiply Charged Ions. J. Mass Spectrom. 1996, 31, 831–842.CrossRefGoogle Scholar
  27. 27.
    Benkestock, K.; Sundqvist, G.; Edlund, P. O.; Roeraade, J. Influence of Droplet Size, Capillary-Cone Distance and Selected Instrumental Parameters for the Analysis of Noncovalent Protein-Ligand Complexes by Nano-Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2004, 39, 1059–1067.CrossRefGoogle Scholar
  28. 28.
    Page, J. S.; Kelly, R. T.; Tang, K.; Smith, R. D. Ionization and Transmission Efficiency in an Electrospray Ionization-Mass Spectrometry Interface. J. Am. Soc. Mass Spectrom. 2007, 18, 1582–1590.CrossRefGoogle Scholar
  29. 29.
    Scalf, M.; Westphall, M. S.; Smith, L. M. Charge Reduction Electrospray Mass Spectrometry. Anal. Chem. 2000, 72, 52–60.CrossRefGoogle Scholar
  30. 30.
    Stephenson, J. L.; McLuckey, S. A. Charge Manipulation for Improved Mass Determination of High-Mass Species and Mixture Components by Electrospray Mass Spectrometry. J. Mass Spectrom. 1998, 33, 664–672.CrossRefGoogle Scholar
  31. 31.
    Dobo, A.; Kaltashov, I. A. Detection of Multiple Protein Conformational Ensembles in Solution Via Deconvolution of Charge-State Distributions in ESI MS. Anal. Chem. 2001, 73, 4763–4773.CrossRefGoogle Scholar
  32. 32.
    Iavarone, A. T.; Jurchen, J. C.; Williams, E. R. Supercharged Protein and Peptide Ions Formed by Electrospray Ionization. Anal. Chem. 2001, 73, 1455–1460.CrossRefGoogle Scholar
  33. 33.
    Iavarone, A. T.; Williams, E. R. Supercharging in Electrospray Ionization: Effects on Signal and Charge. Int. J. Mass Spectrom. 2002, 219, 63–72.CrossRefGoogle Scholar
  34. 34.
    Iavarone, A. T.; Williams, E. R. Collisionally Activated Dissociation of Supercharged Proteins Formed by Electrospray Ionization. Anal. Chem. 2003, 75, 4525–4533.CrossRefGoogle Scholar
  35. 35.
    Davies, N. W.; Wiese, M. D.; Browne, S. G. A. Characterization of Major Peptides in ‘Jack Jumper’ Ant Venom by Mass Spectrometry. Toxicon 2004, 43, 173–183.CrossRefGoogle Scholar
  36. 36.
    Madsen, J. A.; Brodbelt, J. S. Comparison of Infrared Multiphoton Dissociation and Collision-Induced Dissociation of Supercharged Peptides in Ion Traps. J. Am. Soc. Mass Spectrom. 2009, 20, 349–358.CrossRefGoogle Scholar
  37. 37.
    Sze, S. K.; Ge, Y.; Oh, H.; McLafferty, F. W. Top-Down Mass Spectrometry of a 29-kDa Protein for Characterization of Any Posttranslational Modification to within One Residue. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 1774–1779.CrossRefGoogle Scholar
  38. 38.
    Kjeldsen, F.; Giessing, A. M. B.; Ingrell, C. R.; Jensen, O. N. Peptide Sequencing and Characterization of Post-Translational Modifications by Enhanced Ion-Charging and Liquid Chromatography Electron-Transfer Dissociation Tandem Mass Spectrometry. Anal. Chem. 2007, 79, 9243–9252.CrossRefGoogle Scholar
  39. 39.
    Zubarev, R. A.; Horn, D. M.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A.; Lewis, M. A.; Carpenter, B. K.; McLafferty, F. W. Electron Capture Dissociation for Structural Characterization of Multiply Charged Protein Cations. Anal. Chem. 2000, 72, 563–573.CrossRefGoogle Scholar
  40. 40.
    Iavarone, A. T.; Paech, K.; Williams, E. R. Effects of Charge State and Cationizing Agent on the Electron Capture Dissociation of a Peptide. Anal. Chem. 2004, 76, 2231–2238.CrossRefGoogle Scholar
  41. 41.
    Stephenson, J. L.; McLuckey, S. A. Ion/Ion Reactions in the Gas Phase: Proton Transfer Reactions Involving Multiply-Charged Proteins. J. Am. Chem. Soc. 1996, 118, 7390–7397.CrossRefGoogle Scholar
  42. 42.
    Lord Rayleigh. Philos. Mag. 1882, 14, 184–186.Google Scholar
  43. 43.
    CRC Handbook of Chemistry and Physics. In [Online] 89th ed.; D. R. Lide, Ed. 2008–2009.Google Scholar
  44. 44.
    Scherrenberg, R.; Coussens, B.; van Vliet, P.; Edouard, G.; Brackman, J.; de Brabander, E.; Mortensen, K. The Molecular Characteristics of Poly(Propyleneimine) Dendrimers as Studied with Small-Angle Neutron Scattering, Viscosimetry, and Molecular Dynamics. Macromolecules. 1998, 31, 456–461.CrossRefGoogle Scholar
  45. 45.
    Samalikova, M.; Grandori, R. Protein Charge-State Distributions in Electrospray-Ionization Mass Spectrometry Do Not Appear to Be Limited by the Surface Tension of the Solvent. J. Am. Chem. Soc. 2003, 125, 13352–13353.CrossRefGoogle Scholar
  46. 46.
    Samalikova, M.; Matecko, I.; Muller, N.; Grandori, R. Interpreting Conformational Effects in Protein Nano-ESI-MS Spectra. Anal. Bioanal. Chem. 2004, 378, 1112–1123.CrossRefGoogle Scholar
  47. 47.
    Samalikova, M.; Grandori, R. Testing the Role of Solvent Surface Tension in Protein Ionization by Electrospray. J. Mass Spectrom. 2005, 40, 503–510.CrossRefGoogle Scholar
  48. 48.
    Lomeli, S. H.; Yin, S.; Ogorzalek Loo, R. R.; Loo, J. A. Increasing Charge While Preserving Noncovalent Protein Complexes for ESI-MS. J. Am. Soc. Mass Spectrom. 2009, 20, 593–596.CrossRefGoogle Scholar
  49. 49.
    Krantz, B. A.; Finkelstein, A.; Collier, R. J. Protein Translocation Through the Anthrax Toxin Transmembrane Pore Is Driven by a Proton Gradient. J. Mol. Biol. 2006, 355, 968–979.CrossRefGoogle Scholar
  50. 50.
    Batchelor, J. D.; Doucleff, M.; Lee, C. J.; Matsubara, K.; De Carlo, S.; Heideker, J.; Lamers, M. H.; Pelton, J. G.; Wemmer, D. E. Structure and Regulatory Mechanism of Aquifex Aeolicus NtrC4: Variability and Evolution in Bacterial Transcriptional Regulation. J. Mol. Biol. 2008, 384, 1058–1075.CrossRefGoogle Scholar
  51. 51.
    Acampora, G.; Hermans, J. Reversible Denaturation of Sperm Whale Myoglobin: I. Dependence on Temperature, pH, and Composition. J. Am. Chem. Soc. 1967, 89, 1543–1547.CrossRefGoogle Scholar
  52. 52.
    Awad, E. S.; Deranleau, D. A. Thermal Denaturation of Myoglobin: I. Kinetic Resolution of Reaction Mechanism. Biochemistry. 1968, 7, 1791–1795.CrossRefGoogle Scholar
  53. 53.
    Pflumm, M.; Luchins, J.; Beychok, S. Stopped-Flow Circular-Dichroism. Methods Enzymol. 1986, 130, 519–534.CrossRefGoogle Scholar
  54. 54.
    Jurchen, J. C.; Williams, E. R. Origin of Asymmetric Charge Partitioning in the Dissociation of Gas-Phase Protein Homodimers. J. Am. Chem. Soc. 2003, 125, 2817–2826.CrossRefGoogle Scholar
  55. 55.
    Jurchen, J. C.; Garcia, D. E.; Williams, E. R. Further Studies on the Origins of Asymmetric Charge Partitioning in Protein Homodimers. J. Am. Soc. Mass Spectrom. 2004, 15, 1408–1415.CrossRefGoogle Scholar
  56. 56.
    Kintzer, A. F.; Thoren, K. L.; Sterling, H. J.; Dong, K. C.; Feld, G. K.; Tang, I. I.; Zhang, T. I.; Williams, E. R.; Berger, J. M.; Krantz, B. A. The Protective Antigen Component of Anthrax Toxin Forms Functional Octameric Complexes. J. Mol. Biol. 2009, doi: 10.1016/j.jmb.2009.07.037.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  1. 1.College of ChemistryUniversity of California-BerkeleyBerkeleyUSA

Personalised recommendations