Journal of the American Society for Mass Spectrometry

, Volume 20, Issue 9, pp 1731–1738 | Cite as

Exploring fluorescence and fragmentation of ions produced by electrospray ionization in ultrahigh vacuum

  • Konstantin Chingin
  • Huanwen Chen
  • Gerardo Gamez
  • Renato Zenobi
Articles

Abstract

Fluorescence spectroscopy and mass spectrometry have been extensively used for characterization of biomaterials, but usually separately. An instrument combining fluorescence spectroscopy and Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) has been developed to explore both fluorescence and mass spectrometric behavior of ions produced by electrospray ionization (ESI) in ultra high vacuum (<5 × 10−9 mbar). Using rhodamine 6G (R6G) as a sample, the instrument was systematically characterized. Gas-phase fluorescence and mass spectral signal of the same ion population are detected immediately after each other. Effects of gas pressure, ion density, and excitation laser power on the fluorescence signal intensity and mass spectral fragmentation patterns are discussed. Characteristic times of ion photodissociation in ultra high vacuum were recorded for different irradiation powers. Photofragmentation patterns of rhodamine 6G ions in the Penning trap of an FTICR spectrometer obtained by photoinduced dissociation (PID) with visible light and sustained off-resonance irradiation collision-induced dissociation (SORI-CID) were compared. The lowest energy dissociation fragment of rhodamine 6G ions was identified by relating PID patterns of rhodamine 6G and rhodamine 575 dyes at various irradiation powers. The unique instrument provides a powerful platform for probing the intramolecular relaxation mechanisms of nonsolvated ions when interacting with light, which is of great fundamental interest for better understanding of their physical and chemical properties.

Supplementary material

13361_2011_200901731_MOESM1_ESM.doc (195 kb)
Supplementary material, approximately 200 KB.

References

  1. 1.
    Valeur, B. Molecular Fluorescence: Principles and Applications; Wiley-VCH: Weinheim, 2002, 11–15, 41.Google Scholar
  2. 2.
    Wang, Y.; Hendrickson, C. L.; Marshall, A. G. Direct Optical Spectroscopy of Gas-Phase Molecular Ions Trapped and Mass-Selected by Ion Cyclotron Resonance: Laser-Induced Fluorescence Excitation Spectrum of Hexafluorobenzene (C6F6+). Chem. Phys. Lett. 2001, 1/3, 69–75.CrossRefGoogle Scholar
  3. 3.
    Khoury, J. T.; Rodriguez-Cruz, S. E.; Parks, J. H. Pulsed Fluorescence Measurements of Trapped Molecular Ions with Zero Background Detection. J. Am. Soc. Mass Spectrom 2002, 6, 696–708.CrossRefGoogle Scholar
  4. 4.
    Wright, K. C.; Blades, M. W. Fluorescence Emission Spectroscopy of Trapped Molecular Ions. Proceedings of the 51st ASMS Conference on Mass Spectrometry and Allied Topics; Montreal, Canada, June, 2003.Google Scholar
  5. 5.
    Frankevich, V.; Guan, X. W.; Dashtiev, M.; Zenobi, R. Laser-Induced Fluorescence of Trapped Gas-Phase Molecular Ions Generated by Internal-Source Matrix-Assisted Laser Desorption/Ionization in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Eur. J. Mass Spectrom 2005, 5, 475–482.CrossRefGoogle Scholar
  6. 6.
    Bian, Q.; Talbot, F. O.; Forbes, M. W.; Yao, H.; Jockusch, R. A. Development and Characterization of Laser Induced Fluorescence Spectroscopy Coupled with Ion Trap Mass Spectrometry. Proceedings of the 56th ASMS Conference on Mass Spectrometry and Allied Topics; Denver, CO, June, 2008.Google Scholar
  7. 7.
    Sassin, N. A.; Everhart, S. C.; Dangi, B. B.; Ervin, K. M.; Cline, J. I. Fluorescence and Photodissociation of rhodamine 575 Cations in a Quadrupole Ion Trap. J. Am. Soc. Mass Spectrom 2009, 1, 96–104.CrossRefGoogle Scholar
  8. 8.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Electrospray Ionization for Mass-Spectrometry of Large Biomolecules. Science 1989, 4926, 64–71.CrossRefGoogle Scholar
  9. 9.
    Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T. Matrix-Assisted Laser Desorption Ionization Mass-Spectrometry of Biopolymers. Anal. Chem. 1991, 24, A1193-A1202.CrossRefGoogle Scholar
  10. 10.
    Stryer, L.; Haugland, R. P. Energy Transfer—A Spectroscopic Ruler. Proc. Natl. Acad. Sci. U.S.A. 1967, 2, 719–726.CrossRefGoogle Scholar
  11. 11.
    Danell, A. S.; Parks, J. H. FRET Measurements of Trapped Oligonucleotide Duplexes. Int. J. Mass Spectrom 2003, 1/2, 35–45.CrossRefGoogle Scholar
  12. 12.
    Iavarone, A. T.; Parks, J. H. Conformational Change in Unsolvated Trp-Cage Protein Probed by Fluorescence. J. Am. Chem. Soc. 2005, 24, 8606–8607.CrossRefGoogle Scholar
  13. 13.
    Neuweiler, H.; Sauer, M. Using Photoinduced Charge Transfer Reactions to Study Conformational Dynamics of Biopolymers at the Single-Molecule Level. Curr. Pharm. Biotechnol. 2004, 3, 285–298.CrossRefGoogle Scholar
  14. 14.
    Iavarone, A. T.; Duft, D.; Parks, J. H. Shedding Light on Biomolecule Conformational Dynamics Using Fluorescence Measurements of Trapped Ions. J. Phys. Chem. A 2006, 47, 12714–12727.CrossRefGoogle Scholar
  15. 15.
    Marshall, A. G.; Hendrickson, C. L.; Jackson, G. S. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: A primer. Mass Spectrom. Rev. 1998, 1, 1–35.CrossRefGoogle Scholar
  16. 16.
    Li, G. Z.; Vining, V. A.; Guan, S. H.; Marshall, A. G. Laser-Induced Fluorescence of Ba+ Ions Trapped and Mass-Selected in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Rapid Commun. Mass Spectrom. 1996, 14, 1850–1854.Google Scholar
  17. 17.
    Dashtiev, M.; Azov, V.; Frankevich, V.; Scharfenberg, L.; Zenobi, R. Clear Evidence of Fluorescence Resonance Energy Transfer in Gas-Phase Ions. J. Am. Soc. Mass Spectrom 2005, 9, 1481–1487.CrossRefGoogle Scholar
  18. 18.
    Abraham, E. R. I.; Cornell, E. A. Teflon Feedthrough for Coupling Optical Fibers into Ultrahigh Vacuum Systems. Appl. Optics 1998, 10, 1762–1763.CrossRefGoogle Scholar
  19. 19.
    Guan, S. H.; Marshall, A. G. Ion Traps for Fourier-Transform Ion-Cyclotron Resonance Mass-Spectrometry—Principles and Design of Geometric and Electric Configurations. Int. J. Mass Spectrom. Ion Processes 1995, 146, 261–296.CrossRefGoogle Scholar
  20. 20.
    Dashtiev, M.; Zenobi, R. Effect of Buffer Gas on the Fluorescence Yield of Trapped Gas-Phase Ions. J. Am. Soc. Mass Spectrom. 2006, 6, 855–858.CrossRefGoogle Scholar
  21. 21.
    Eggeling, C.; Widengren, J.; Rigler, R.; Seidel, C. A. M. Photobleaching of Fluorescent Dyes Under Conditions Used for Single-Molecule Detection: Evidence of Two-Step Photolysis. Anal. Chem. 1998, 13, 2651–2659.CrossRefGoogle Scholar
  22. 22.
    Gauthier, J. W.; Trautman, T. R.; Jacobson, D. B. Sustained Off-Resonance Irradiation for Collision-Activated Dissociation Involving Fourier-Transform Mass-Spectrometry-Collision-Activated Dissociation Technique That Emulates Infrared Multiphoton Dissociation. Anal. Chim. Acta 1991, 1, 211–225.CrossRefGoogle Scholar
  23. 23.
    Little, D. P.; Speir, J. P.; Senko, M. W.; O’Connor, P. B.; McLafferty, F. W. Infrared Multiphoton Dissociation of Large Multiply-Charged Ions for Biomolecule Sequencing. Anal. Chem. 1994, 18, 2809–2815.CrossRefGoogle Scholar
  24. 24.
    Guan, S. H.; Marshall, A. G.; Wahl, M. C. MS/MS with High Detection Efficiency and Mass Resolving Power for Product Ions in Fourier-Transform Ion-Cyclotron Resonance Mass-Spectrometry. Anal. Chem. 1994, 8, 1363–1367.CrossRefGoogle Scholar
  25. 25.
    Williams, E. R.; Furlong, J. J. P.; McLafferty, F. W. Efficiency of Collisionally-Activated Dissociation and 193-nm Photodissociation of Peptide Ions in Fourier-Transform Mass-Spectrometry. J. Am. Soc. Mass Spectrom. 1990, 4, 288–294.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • Konstantin Chingin
    • 1
  • Huanwen Chen
    • 2
  • Gerardo Gamez
    • 1
  • Renato Zenobi
    • 1
  1. 1.Chemistry Department and Applied BiosciencesETH ZürichZürichSwitzerland
  2. 2.Applied Chemistry DepartmentEast China Institute of TechnologyFuzhouChina

Personalised recommendations