Journal of the American Society for Mass Spectrometry

, Volume 20, Issue 9, pp 1593–1602 | Cite as

The contributions of molecular framework to IMS collision cross-sections of gas-phase peptide ions

  • Lei Tao
  • David B. Dahl
  • Lisa M. Pérez
  • David H. Russell
Articles

Abstract

Molecular dynamics (MD) is an essential tool for correlating collision cross-section data determined by ion mobility spectrometry (IMS) with candidate (calculated) structures. Conventional methods used for ion structure determination rely on comparing the measured cross-sections with the calculated collision cross-section for the lowest energy structure(s) taken from a large pool of candidate structures generated through multiple tiers of simulated annealing. We are developing methods to evaluate candidate structures from an ensemble of many conformations rather than the lowest energy structure. Here, we describe computational simulations and clustering methods to assign backbone conformations for singly-protonated ions of the model peptide (NH2-Met-Ile-Phe-Ala-Gly-Ile-Lys-COOH) formed by both MALDI and ESI, and compare the structures of MIFAGIK derivatives to test the ‘sensitivity’ of the cluster analysis method. Cluster analysis suggests that [MIFAGIK + H]+ ions formed by MALDI have a predominantly turn structure even though the low-energy ions prefer partial helical conformers. Although the ions formed by ESI have collision cross-sections that are different from those formed by MALDI, the results of cluster analysis indicate that the ions backbone structures are similar. Chemical modifications (N-acetyl, methylester as well as addition of Boc or Fmoc groups) to MIFAGIK alter the distribution of various conformers; the most dramatic changes are observed for the [M + Na]+ ion, which show a strong preference for random coil conformers owing to the strong solvation by the backbone amide groups.

Supplementary material

13361_2011_200901593_MOESM1_ESM.jpg (507 kb)
Supplementary material, approximately 519 KB.
13361_2011_200901593_MOESM2_ESM.rtf (19 kb)
Supplementary material, approximately 20 KB.
13361_2011_200901593_MOESM3_ESM.pdf (33 kb)
Supplementary material, approximately 34 KB.

References

  1. 1.
    Ruotolo, B. T.; Giles, K.; Campuzano, I.; Sandercock, A. M.; Bateman, R. H.; Robinson, C. V. Evidence for Macromolecular Protein Rings in the Absence of Bulk Water. Science 2005, 310, 1658–1661.CrossRefGoogle Scholar
  2. 2.
    Kaddis, C. S.; Lomeli, S. H.; Yin, S.; Berhane, B.; Apostol, M. I.; Kickhoefer, V. A.; Rome, L. H.; Loo, J. A. Sizing Large Proteins and Protein Complexes by Electrospray Ionization Mass Spectrometry and Ion Mobility. J. Am. Soc. Mass Spectrom. 2007, 18, 1206–1216.CrossRefGoogle Scholar
  3. 3.
    Kaddis, C. S.; Loo, J. A. Native protein MS and Ion Mobility: Large Flying Proteins with ESI. Anal. Chem. 2007, 79, 1778–1784.CrossRefGoogle Scholar
  4. 4.
    Loo, J. A.; Kaddis, C. S. Direct characterization of protein complexes by electrospray ionization mass spectrometry and ion mobility analysis; John Wiley & Sons, Inc.: Hoboken, NJ, 2007, pp. 1–23.Google Scholar
  5. 5.
    Ruotolo, B. T.; Hyung, S.-J.; Robinson, P. M.; Giles, K.; Bateman, R. H.; Robinson, C. V. Ion mobility-mass spectrometry reveals long-lived, unfolded intermediates in the dissociation of protein complexes. Angew. Chem. Int. Ed. 2007, 46, 8001–8004.CrossRefGoogle Scholar
  6. 6.
    Ruotolo, B. T.; Benesch, J. L. P.; Sandercock, A. M.; Hyung, S.-J.; Robinson, C. V. Ion mobility-mass spectrometry analysis of large protein complexes. Nat. Protocols 2008, 3, 1139–1152.CrossRefGoogle Scholar
  7. 7.
    Uetrecht, C.; Versluis, C.; Watts, N. R.; Wingfield, P. T.; Steven, A. C.; Heck, A. J. R. Stability and shape of hepatitis B virus capsids in vacuo. Angew. Chem. Int. Ed. 2008, 47, 6247–6251.CrossRefGoogle Scholar
  8. 8.
    Barrera, N. P.; Di Bartolo, N.; Booth, P. J.; Robinson, C. V. Micelles Protect Membrane Complexes from Solution to Vacuum. Science 2008, 321, 243–246.CrossRefGoogle Scholar
  9. 9.
    Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. Naked Protein Conformations: Cytochrome c in the Gas Phase. J. Am. Chem. Soc. 1995, 117, 10141–10142.CrossRefGoogle Scholar
  10. 10.
    Shelimov, K. B.; Jarrold, M. F. Conformations, Unfolding, and Refolding of Apomyoglobin in Vacuum: An Activation Barrier for Gas-Phase Protein Folding. J. Am. Chem. Soc. 1997, 119, 2987–2994.CrossRefGoogle Scholar
  11. 11.
    Hudgins, R. R.; Ratner, M. A.; Jarrold, M. F. Design of Helices hat are Stable in Vacuo. J. Am. Chem. Soc. 1998, 120, 12974–12975.CrossRefGoogle Scholar
  12. 12.
    Ruotolo, B. T.; Verbeck, G. F.; Thomson, L. M.; Gillig, K. J.; Russell, D. H. Observation of conserved solution-phase secondary structure in gas-phase tryptic peptides. J. Am. Chem. Soc. 2002, 124, 4214–4215.CrossRefGoogle Scholar
  13. 13.
    Ruotolo, B. T.; Russell, D. H. Gas-phase conformations of proteolytically derived protein fragments: Influence of solvent on peptide conformation. J. Phys. Chem. B 2004, 108, 15321–15331.CrossRefGoogle Scholar
  14. 14.
    McLean, J. A.; Ruotolo, B. T.; Gillig, K. J.; Russell, D. H. Ion mobility-mass spectrometry: A new paradigm for proteomics. Int. J. Mass Spectrom. 2005, 240, 301–315.CrossRefGoogle Scholar
  15. 15.
    Tao, L.; McLean, J. R.; McLean, J. A.; Russell, D. H. A Collision Cross-Section Database of Singly-Charged Peptide Ions. J. Am. Soc. Mass Spectrom. 2007, 18, 1232–1238.CrossRefGoogle Scholar
  16. 16.
    Ruotolo, B. T.; Verbeck, G. F.; Thomson, L. M.; Woods, A. S.; Gillig, K. J.; Russell, D. H. Distinguishing between phosphorylated and nonphosphorylated peptides with ion mobility-mass spectrometry. J. Proteome Res. 2002, 1, 303–306.CrossRefGoogle Scholar
  17. 17.
    Ruotolo, B. T.; Gillig, K. J.; Woods, A. S.; Egan, T. F.; Ugarov, M. V.; Schultz, J. A.; Russell, D. H. Analysis of phosphorylated peptides by ion mobility-mass spectrometry. Anal. Chem. 2004, 76, 6727–6733.CrossRefGoogle Scholar
  18. 18.
    McLean, J. R.; McLean, J. A.; Wu, Z.; Becker, C.; Pérez, L. M.; Pace, C. N.; Scholtz, J. M.; Russell, D. H. Factors that Influence Helical Preferences for Singly-Charged Gas-Phase Peptide Ions: The Effects of Multiple Charge-Carrying Sites. J. Am. Chem. Soc., submitted.Google Scholar
  19. 19.
    Wilson, S. R.; Cui, W. Applications of simulated annealing to peptides. Biopolymers 1990, 29, 225–235.CrossRefGoogle Scholar
  20. 20.
    Fernandez-Lima, F. A.; Wei, H.; Gao, Y. Q.; Russell, D. H. On the structure elucidation using IMS and Molecular Dynamics. J. Phys. Chem. A, submitted.Google Scholar
  21. 21.
    Stearns, J. A.; Boyarkin, O. V.; Rizzo, T. R. Spectroscopic signatures of gas-phase helices: Ac-Phe-(Ala)5-Lys-H+ and Ac-Phe-(Ala)10-Lys-H+. J. Am. Chem. Soc. 2007, 129, 13820–13821.CrossRefGoogle Scholar
  22. 22.
    Stearns, J. A.; Guidi, M.; Boyarkin, O. V.; Rizzo, T. R. Conformation-specific infrared and ultraviolet spectroscopy of tyrosine-based protonated dipeptides. J. Chem. Phys. 2007, 127, 154322.CrossRefGoogle Scholar
  23. 23.
    Stearns, J. A.; Mercier, S.; Seaiby, C.; Guidi, M.; Boyarkin, O. V.; Rizzo, T. R. Conformation-specific spectroscopy and photodissociation of cold, protonated tyrosine and phenylalanine. J. Am. Chem. Soc. 2007, 129, 11814–11820.CrossRefGoogle Scholar
  24. 24.
    Damsbo, M.; Kinnear, B. S.; Hartings, M. R.; Ruhoff, P. T.; Jarrold, M. F.; Ratner, M. A. Application of evolutionary algorithm methods to polypeptide folding: Comparison with experimental results for unsolvated Ac-(Ala-Gly-Gly)5-LysH+. Natl. Acad. Sci. U.S.A. 2004, 101, 7215–7222.CrossRefGoogle Scholar
  25. 25.
    Carpino, L. A.; Han, G. Y. 9-Fluorenylmethoxycarbonyl function, a new base-sensitive amino-protecting group 1970, 92, 5748–5749.Google Scholar
  26. 26.
    Reid, G.; Simpson, R.; O’Hair, R. J. A mass spectrometric and ab initio study of the pathways for dehydration of simple glycine and cysteine-containing peptide [M + H]+ ions. J. Am. Soc. Mass Spectrom. 1998, 9, 945–956.CrossRefGoogle Scholar
  27. 27.
    Gillig, K. J.; Ruotolo, B. T.; Stone, E. G.; Russell, D. H.; Fuhrer, K.; Gonin, M.; Schultz, J. A. Coupling high-pressure MALDI with ion mobility/orthogonal time-of-flight mass spectrometry. Anal. Chem. 2000, 72, 3965–3971.CrossRefGoogle Scholar
  28. 28.
    Stone, E.; Gillig, K. J.; Ruotolo, B.; Fuhrer, K.; Gonin, M.; Schultz, A.; Russell, D. H. Surface-induced dissociation on a MALDI-ion mobility-orthogonal time-of-flight mass spectrometer: Sequencing peptides from an “in-solution” protein digest. Anal. Chem. 2001, 73, 2233–2238.CrossRefGoogle Scholar
  29. 29.
    Mason, E. A.; McDaniel, E. W. Transport Properties of Ions in Gases; Wiley: New York, 1988, pp. 1–29.CrossRefGoogle Scholar
  30. 30.
    Sawyer, H. A.; Marini, J. T.; Stone, E. G.; Ruotolo, B. T.; Gillig, K. J.; Russell, D. H. The structure of gas-phase bradykinin fragment 1-5 (RPPGF) ions: an ion mobility spectrometry and H/D exchange ion-molecule reaction chemistry study. J. Am. Soc. Mass Spectrom. 2005, 16, 893–905.CrossRefGoogle Scholar
  31. 31.
    Shvartsburg, A. A.; Jarrold, M. F. An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem. Phys. Lett. 1996, 261, 86–91.CrossRefGoogle Scholar
  32. 32.
    Dahl, D. B. Model-Based Clustering for Expression Data via a Dirichlet Process Mixture Model; Cambridge University Press: Cambridge, 2006, 201–218.Google Scholar
  33. 33.
    Binder, D. A. Bayesian Cluster Analysis. Biometrika 1978, 65, 31–38.CrossRefGoogle Scholar
  34. 34.
    Hubert, L.; Arabie, P. Comparing Partitions. J. Classification 1985, 2, 193–218.CrossRefGoogle Scholar
  35. 35.
    Valentine, S. J.; Counterman, A. E.; Clemmer, D. E. A database of 660 peptide ion cross sections: Use of intrinsic size parameters for bona fide predictions of cross sections. J. Am. Soc. Mass Spectro. 1999, 10, 1188–1211.CrossRefGoogle Scholar
  36. 36.
    Lee, S.-W.; Kim, H. S.; Beauchamp, J. L. Salt Bridge Chemistry Applied to Gas-Phase Peptide Sequencing: Selective Fragmentation of Sodiated Gas-Phase Peptide Ions Adjacent to Aspartic Acid Residues. J. Am. Chem. Soc. 1998, 120, 3188–3195.CrossRefGoogle Scholar
  37. 37.
    Ganesh, S.; Jayakumar, R. Role of N-t-Boc group in helix initiation in a novel tetrapeptide. J. Peptide Res. 2002, 59, 249–256.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • Lei Tao
    • 1
  • David B. Dahl
    • 2
  • Lisa M. Pérez
    • 3
  • David H. Russell
    • 1
  1. 1.The Laboratory for Biological Mass Spectrometry, Department of ChemistryTexas A and M UniversityCollege StationUSA
  2. 2.Department of StatisticsTexas A and M UniversityCollege StationUSA
  3. 3.The Laboratory for Molecular SimulationTexas A and M UniversityCollege StationUSA

Personalised recommendations