Structural elucidation of isocyanate-peptide adducts using tandem mass spectrometry

  • Justin M. Hettick
  • Tinashe B. Ruwona
  • Paul D. Siegel
Articles

Abstract

Diisocyanates are highly reactive chemical compounds widely used in the manufacture of polyurethanes. Although diisocyanates have been identified as causative agents of allergic respiratory diseases, the specific mechanism by which these diseases occur is largely unknown. To better understand the chemical species produced when isocyanates are reacted with model peptides, tandem mass spectrometry was employed to unambiguously identify the binding site of four commercially-relevant isocyanates on model peptides. In each case, the isocyanates react preferentially with the N-terminus of the peptide. No evidence of side-chain/isocyanate adduct formation exclusive of the N-terminus was observed. However, significant intra-molecular diisocyanate crosslinking was observed between the N-terminal amine and a side-chain amine of arginine, when Arg was located within two residues of the N-terminus. Addition of multiple isocyanates to the peptide occurs via polymerization of the isocyanate at the N-terminus, rather than via addition of multiple isocyanate molecules to varied residues within the peptide. The direct observation of isocyanate binding to the N-terminus of peptides under these experimental conditions is in good agreement with previous studies on the relative reaction rate of isocyanate with amino acid functional groups.

Supplementary material

13361_2011_200801567_MOESM1_ESM.ppt (507 kb)
Supplementary material, approximately 519 KB.

References

  1. 1.
    Randall, D.; Lee, S. The Polyurethanes Book; John Wiley and Sons, Inc.: New York, 2002; pp 63–87.Google Scholar
  2. 2.
    NIOSH. A Summary of Health Hazard Evaluations: Issues Related to Occupational Exposure to Isocyanates, 1989–2002; Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health: Cincinnati, OH, 2004.Google Scholar
  3. 3.
    Porter, C. V.; Higgins, R. L.; Scheel, L. D. A Retrospective study of clinical, physiologic, and immunologic changes in workers exposed to toluene diisocyanate. Am. Ind. Hyg. Assoc. J. 1975, 36, 159–168.CrossRefGoogle Scholar
  4. 4.
    Adams, W. G. Long-term effects on the health of men engaged in the manufacture of toluylene diisocyanate. Br. J Ind. Med. 1975, 32, 72–78.Google Scholar
  5. 5.
    White, W. G.; Morris, M. J.; Sugden, E.; Zapata, E. Isocyanate-induced asthma in a car factory. Lancet 1980, 1, 756–760.CrossRefGoogle Scholar
  6. 6.
    Wisnewski, A. V.; Srivastava, R.; Herick, C.; Xu, L.; Lemus, R.; Cain, H.; Magoski, N. M.; Karol, M. H.; Bottomly, K.; Redlich, C. A. Identification of human lung and skin proteins conjugated with hexamethylene diisocyanate in vitro and in vivo. Am. J. Respir. Crit. Care. Med. 2000, 162, 2330–2336.CrossRefGoogle Scholar
  7. 7.
    Jin, R.; Day, B. W.; Karol, M. H. Toluene diisocyanate protein adducts in the bronchoalveolar lavage of guinea pigs exposed to vapors of the chemical. Chem. Res. Toxicol. 1993, 6, 906–912.CrossRefGoogle Scholar
  8. 8.
    Bello, D.; Redlich, C. A.; Stowe, M. H.; Sparer, J.; Woskie, S. R.; Streicher, R. P.; Hosgood, H. D.; Liu, Y. Skin exposure to aliphatic polyisocyanates in the auto body repair and refinishing industry: II. A quantitative assessment. Ann. Occup. Hyg. 2008, 52, 117–124.CrossRefGoogle Scholar
  9. 9.
    Petsonk, E. L.; Wang, M. L.; Lewis, D. M.; Siegel, P. D.; Husberg, B. J. Asthma-like symptoms in wood product plant workers exposed to methylene diphenyl diisocyanate. Chest 2000, 118, 1183–1193.CrossRefGoogle Scholar
  10. 10.
    Campo, P.; Wisnewski, A. V.; Lummus, Z.; Cartier, A.; Malo, J. L.; Boulet, L. P.; Bernstein, D. I. Diisocyanate conjugate and immunoassay characteristics influence detection of specific antibodies in HDI-exposed workers. Clin. Exp. Allergy. 2007, 37, 1095–1102.CrossRefGoogle Scholar
  11. 11.
    Johannesson, G.; Sennbro, C. J.; Willix, P.; Lindh, C. H.; Jonsson, B. A. Identification and characterization of adducts between serum albumin and 4,4′-methylenediphenyl diisocyanate (MDI) in human plasma. Arch. Toxicol. 2004, 78, 378–383.CrossRefGoogle Scholar
  12. 12.
    Wisnewski, A. V.; Stowe, M. H.; Cartier, A.; Liu, Q.; Liu, J.; Chen, L.; Redlich, C. A. Isocyanate vapor-induced antigenicity of human albumin. J. Allergy. Clin. Immunol. 2004, 113, 1178–1184.CrossRefGoogle Scholar
  13. 13.
    Sabbioni, G.; Hartley, R.; Schneider, S. Synthesis of adducts with amino acids as potential dosimeters for the biomonitoring of humans exposed to toluene diisocyanate. Chem. Res. Toxicol. 2001, 14, 1573–1583.CrossRefGoogle Scholar
  14. 14.
    Whitehouse, C. M.; Dreyer, R. N.; Yamashita, M.; Fenn, J. B. Electrospray interface for liquid chromatographs and mass spectrometers. Anal. Chem. 1985, 57, 675–679.CrossRefGoogle Scholar
  15. 15.
    Pandey, A.; Mann, M. Proteomics to study genes and genomes. Nature. 2000, 405, 837–845.CrossRefGoogle Scholar
  16. 16.
    Smith, R. D.; Loo, J. A.; Edmonds, C. G.; Barinaga, C. J.; Udseth, H. R. New developments in biochemical mass spectrometry: Electrospray ionization. Anal. Chem. 1990, 62, 882–899.CrossRefGoogle Scholar
  17. 17.
    Cramer, R.; Corless, S. The nature of collision-induced dissociation processes of doubly protonated peptides: Comparative study for the future use of matrix-assisted laser desorption/ionization on a hybrid quadrupole time-of-flight mass spectrometer in proteomics. Rapid Commun. Mass Spectrom. 2001, 15, 2058–2066.CrossRefGoogle Scholar
  18. 18.
    Biemann, K. Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation. In Methods in Enzymology Vol. CXCIII; McCloskey, J. A., Ed. Academic Press: San Diego, CA, 1990; pp 886–887.Google Scholar
  19. 19.
    Chernushevich, I. V.; Loboda, A. V.; Thompson, B. A. An introduction to quadrupole-time-of-flight mass spectrometry. J. Mass Spectrom. 2001, 36, 849–865.CrossRefGoogle Scholar
  20. 20.
    Yakabe, Y.; Henderson, K. M.; Thompson, W. C.; Pemberton, D.; Tury, B.; Bailey, R. E. Fate of methylenediphenyl diisocyanate and toluene diisocyanate in the aquatic environment. Environ. Sci. Technol. 1999, 33, 2579–2583.CrossRefGoogle Scholar
  21. 21.
    Baur, X.; Belin, L.; Blaska, A.; Dieter, M.; Greenburg, M.; Gut, I.; Mann, M.; Rosenburg, C.; Sakurai, H. Environmental Health Criteria 75: Toluene Diisocyanates; World Health Organization: Geneva, 1987.Google Scholar
  22. 22.
    Lee, F.-T. H. Curatives for Castable Urethane Elastomers. In Handbook of Polymer Science and Technology. Vol II: Performance Properties of Plastics and Elastomers; Cheremisinoff, N. P., Ed. CRC Press: Boca Raton, FL, 1989; pp 291–334.Google Scholar
  23. 23.
    Chipinda, I.; Stetson, S. J.; Depree, G. J.; Simoyi, R. H.; Siegel, P. D. Kinetics and mechanistic studies of the hydrolysis of diisocyanate-derived bis-thiocarbamates of cysteine methyl ester. Chem. Res. Toxicol. 2006, 19, 341–350.CrossRefGoogle Scholar
  24. 24.
    McLafferty, F. W.; Horn, D. M.; Breuker, K.; Ge, Y.; Lewis, M. A.; Cerda, B.; Zubarev, R. A.; Carpenter, B. K. Electron capture dissociation of gaseous multiply charged ions by Fourier-transform ion cyclotron resonance. J Am. Soc. Mass Spectrom. 2001, 12, 245–249.CrossRefGoogle Scholar
  25. 25.
    She, Y. M.; Krokhin, O.; Spicer, V.; Loboda, A.; Garland, G.; Ens, W.; Standing, K. G.; Westmore, J. B. Formation of (bn-1 + H2O) ions by collisional activation of MALDI-formed peptide [M + H]+ ions in a QqTOF mass spectrometer. J. Am. Soc. Mass. Spectrom. 2007, 18, 1024–1037.CrossRefGoogle Scholar
  26. 26.
    Hiserodt, R. D.; Brown, S. M.; Swijter, D. F.; Hawkins, N.; Mussinan, C. J. A study of b1+H2O and b1-ions in the product ion spectra of dipeptides containing N-terminal basic amino acid residues. J. Am. Soc. Mass Spectrom. 2007, 18, 1414–1422.CrossRefGoogle Scholar
  27. 27.
    Wysocki, V. H.; Tsaprailis, G.; Smith, L. L.; Breci, L. A. Mobile and localized protons: A framework for understanding peptide dissociation. J. Mass Spectrom. 2000, 35, 1399–1406.CrossRefGoogle Scholar
  28. 28.
    Stark, G. R. Reactions of cyanate with functional groups of proteins. 3: Reactions with amino and carboxyl groups. Biochemistry 1965, 4, 1030–1036.CrossRefGoogle Scholar
  29. 29.
    Mason, D. E.; Liebler, D. C. Quantitative analysis of modified proteins by LC-MS/MS of peptides labeled with phenyl isocyanate. J. Proteome Res. 2003, 2, 265–272.CrossRefGoogle Scholar
  30. 30.
    Sabbioni, G.; Hartley, R.; Henschler, D.; Hollrigl-Rosta, A.; Koeber, R.; Schneider, S. Isocyanate-specific hemoglobin adduct in rats exposed to 4, 4′-methylenediphenyl diisocyanate. Chem. Res. Toxicol. 2000, 13, 82–89.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • Justin M. Hettick
    • 1
  • Tinashe B. Ruwona
    • 1
  • Paul D. Siegel
    • 1
  1. 1.Centers for Disease Control and Prevention, National Institute for Occupational Safety and HealthHealth Effects Laboratory DivisionMorgantownUSA

Personalised recommendations