Advertisement

MALDI produced ions inspected with a linear ion trap-orbitrap hybrid mass analyzer

  • Kerstin Strupat
  • Viatcheslav Kovtoun
  • Huy Bui
  • Rosa Viner
  • George Stafford
  • Stevan Horning
Focus: The Orbitrap

Abstract

A MALDI source is interfaced to a modified LTQ Orbitrap XL instrument. This work gives insight into the MALDI source design and shows results obtained with the MALDI source coupled to an accurate mass, high-resolution hybrid mass spectrometer. MALDI-produced ions and fragment ions thereof produced in the mass spectrometer may be analyzed and detected by the Orbitrap analyzer at a maximum mass resolution of 100,000 (FWHM) at m/z 400 with high mass accuracy. An accuracy of ≤2 ppm is achieved by internal mass calibration using lock mass functionality; using external mass calibration, an accuracy of ≤3 ppm is routinely obtained. External mass calibration of the hybrid mass spectrometer is performed using a standard calibration mixture of different peptides and matrix components. The instrumental capabilities are demonstrated for analytical methodologies such as Protein ID using Peptide Mass Fingerprint (PMF) and MS/MS analyses of small molecule samples. Stability of mass accuracy and signal-to-noise ratio for low samples loads (on plates) are demonstrated as well as the experimental dynamic range using α-cyano-4-hydroxy cinnamic acid (CHCA) matrix.

Keywords

MALDI Laser Shot Automatic Gain Control Linear Trap CHCA Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

13361_2011_200801451_MOESM1_ESM.pdf (14 kb)
Supplementary material, approximately 14 KB.
13361_2011_200801451_MOESM2_ESM.pdf (18 kb)
Supplementary material, approximately 18 KB.
13361_2011_200801451_MOESM3_ESM.pdf (28 kb)
Supplementary material, approximately 29 KB.
13361_2011_200801451_MOESM4_ESM.pdf (14 kb)
Supplementary material, approximately 15 KB.
13361_2011_200801451_MOESM5_ESM.pdf (18 kb)
Supplementary material, approximately 19 KB.
13361_2011_200801451_MOESM6_ESM.pdf (26 kb)
Supplementary material, approximately 26 KB.
13361_2011_200801451_MOESM7_ESM.doc (24 kb)
Supplementary material, approximately 24.0 KB.
13361_2011_200801451_MOESM8_ESM.doc (34 kb)
Supplementary material, approximately 34.5 KB.

References

  1. 1.
    Karas, M.; Bachmann, D.; Bahr, U.; Hillenkamp, F. Matrix-Assisted Ultraviolet Laser Desorption of Nonvolatile Compounds. Int. J. Mass Spectrom. Ion Processes 1987, 78, 53–68.CrossRefGoogle Scholar
  2. 2.
    Karas, M.; Hillenkamp, F. Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltons. Anal. Chem. 1988, 60, 2299–2301.CrossRefGoogle Scholar
  3. 3.
    Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Protein and Polymer Analyses up to m/z 100,000 by Laser Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151–153.CrossRefGoogle Scholar
  4. 4.
    Brown, R. S.; Lennon, J. J. Mass Resolution Improvement by Incorporation of Pulsed Ion Extraction in a Matrix-Assisted Laser Desorption/Ionization Linear Time-of-Flight Mass Spectrometer. Anal. Chem. 1995, 67, 1998–2003.CrossRefGoogle Scholar
  5. 5.
    Colby, S.; King, T. B.; Reilly, J. P. Improving the Resolution of Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry by Exploiting the Correlation Between Ion Position and Velocity. Rapid Commun. Mass Spectrom. 1994, 8, 865–868.CrossRefGoogle Scholar
  6. 6.
    Vestal, M. L.; Juhasz, P.; Martin, S. A. Delayed Extraction Matrix-Assisted Laser Desorption Time-of-flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1995, 9, 1044–1050.CrossRefGoogle Scholar
  7. 7.
    Whittal, R.; Li, L. High-Resolution Matrix-Assisted Laser Desorption/Ionization in a Linear Time-of-Flight Mass Spectrometer. Anal. Chem. 1995, 67, 1950–1954.CrossRefGoogle Scholar
  8. 8.
    Edmondson, R. D.; Russell, D. Evaluation of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Measurement Accuracy by Using Delayed Extraction. J. Am. Soc. Mass Spectrom. 1996, 7, 995–1001.CrossRefGoogle Scholar
  9. 9.
    Reiber, D. C.; Grover, T. A.; Brown, R. S. Identifying Proteins Using MALDI In-Source Fragmentation Data Combined with Database Searching. Anal. Chem. 1998, 70, 673–683.CrossRefGoogle Scholar
  10. 10.
    Juhasz, P.; Vestal, M. L.; Martin, S. A. On the Initial Velocity of Ions Generated by MALDI and Its Effects on the Calibration of Delayed Extraction TOF Mass Spectra. J. Am. Soc. Mass Spectrom. 1997, 8, 209–217.CrossRefGoogle Scholar
  11. 11.
    Vestal, M.; Juhasz, P. Resolution and Mass Accuracy in Matrix-Assisted Laser Desorption Ionization-Time-of-Flight. J. Am. Soc. Mass Spectrom. 1998, 9, 892–911.CrossRefGoogle Scholar
  12. 12.
    Whittal, R. M.; Russon, L. M.; Weinberger, S. R.; Li, L. Functional Wave Time-Lag Focusing Matrix-Assisted Laser Desorption/Ionization in a Linear Time-of-Flight Mass Spectrometer: Improved Mass Accuracy. Anal. Chem. 1997, 69, 2147–2153.CrossRefGoogle Scholar
  13. 13.
    Franzen, J. Improved Resolution for MALDI-TOF Mass Spectrometers: A Mathematical Study. Int. J. Mass Spectrom. Ion Process. 1997, 164, 19–34.CrossRefGoogle Scholar
  14. 14.
    Kovtoun, S. V. An Approach to the Design of Mass-Correlated Delayed Extraction in a Linear Time-of-Flight Mass Spectrometer. Rapid Commun. Mass Spectrom. 1997, 11, 433–436.CrossRefGoogle Scholar
  15. 15.
    Krutchinsky, A.; Loboda, A.; Spicer, V.; Dworschak, R.; Ens, W.; Standing, K. Orthogonal Injection of Matrix Assisted Laser Desorption/Ionization Ions into a Time-of-Flight Spectrometer Through a Collisional Damping Interface. Rapid Commun. Mass Spectrom. 1998, 12, 508–518.CrossRefGoogle Scholar
  16. 16.
    Verentchikov, A.; Vestal, M.; Smirnov, I. Method and Apparatus for Determining Molecular Weight of Labile Molecules. US6504150B1 patent, Jan 7, 2003.Google Scholar
  17. 17.
    Laiko, V.; Moyer, S.; Cotter, R. Atmospheric Pressure MALDI/Ion Trap Mass Spectrometry. Anal. Chem. 2000, 72, 5239–5243.CrossRefGoogle Scholar
  18. 18.
    Laiko, V.; Baldwin, M.; Burlingame, A. L. Atmospheric Pressure MALDI MS. Anal. Chem. 2000, 72, 652–657.CrossRefGoogle Scholar
  19. 19.
    Miller, C.; Yi, D.; Perkins, P. An Atmospheric Pressure Matrix-Assisted Laser Desorption/ Ionization ion Trap with Enhanced Sensitivity. Rapid Commun. Mass Spectrom. 2003, 17, 860–868.CrossRefGoogle Scholar
  20. 20.
    Shevchenko, A.; Loboda, A.; Shevchenko, A.; Ens, W.; Standing, K. G. MALDI Quadrupole Time-of-Flight Mass Spectrometry: A Powerful Tool for Proteomic Research. Anal. Chem. 2000, 72, 2132–2141.CrossRefGoogle Scholar
  21. 21.
    Loboda, A. V.; Krutchinsky, A. N.; Bromirski, M.; Ens, W.; Standing, K. G. A Tandem Quadrupole/Time-of-Flight Mass Spectrometer With a Matrix-Assisted Laser Desorption/Ionization Source: Design and Performance. Rapid Commun. Mass Spectrom. 2000, 14, 1047–1057.CrossRefGoogle Scholar
  22. 22.
    Westmaccot, G.; Ens, W.; Krutchinsky, A.; Standing, K. Measurements of Ion Yield vs. Laser Fluence Using Orthogonal-Injection MALDI/TOF with Collisional Cooling-Ion Counting. Proceedings of the 46th ASMS Conference; Orlando, FL, May, 1998.Google Scholar
  23. 23.
    Holle, A.; Haase, A.; Kayser, M.; Höhndorf, J. Optimizing UV Laser Focus Profiles for Improved MALDI Performance. J. Mass Spectrom. 2006, 41, 705–716.CrossRefGoogle Scholar
  24. 24.
    Pan, Y.; Cotter, R. J. Measurement of Initial Translational Energies of Peptide Ions in Laser Desorption/Ionization Mass Spectrometry. Org. Mass Spectrom. 1992, 27, 3–8.CrossRefGoogle Scholar
  25. 25.
    Loboda, A. V.; Ackloo, S.; Chernushevich, I. V. A High-Performance Matrix-Assisted Laser Desorption/Ionization Orthogonal Time-of-Flight Mass Spectrometer with Collisional Cooling. Rapid Commun. Mass Spectrom. 2003, 17, 2508–2516.CrossRefGoogle Scholar
  26. 26.
    Martin, R. L.; Brancia, F. L. Analysis of High Mass Peptides Using a Novel Matrix-Assisted Laser Desorption /Ionization Quadrupole Ion Trap Time-of-Flight Mass Spectrometer. Rapid Commun. Mass Spectrom. 2003, 17, 1358–1365.CrossRefGoogle Scholar
  27. 27.
    Rappsilber, J.; Moniatte, M.; Nielsen, M.; Podtelejnikov, A.; Mann, M. Experiences and Perspectives of MALDI and MS/MS in Proteomic Research. Int. J. Mass Spectrom. 2003, 226, 223–237.CrossRefGoogle Scholar
  28. 28.
    Corr, J.; Kovarik, P.; Schneider, B.; Hendrikse, J.; Loboda, A.; Covey, T. Design Considerations for High Speed Quantitative Mass Spectrometry with MALDI Ionization. J. Am. Soc. Mass Spectrom. 2006, 17, 1129–1141.CrossRefGoogle Scholar
  29. 29.
    Fuchser, J.; Berg, C.; Witt, M.; Becker, M.; Thompson, C. Direct Identification of Small Molecules by MALDI Imaging using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Proceedings of the 56th ASMS Conference; Denver, CO, June, 2008.Google Scholar
  30. 30.
    Makarov, A.; Denisov, E.; Kholomeev, A.; Balschun, W.; Lange, O.; Strupat, K.; Horning, S. Performance Evaluation of a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer. Anal. Chem. 2006, 78(7), 2113–2120.CrossRefGoogle Scholar
  31. 31.
    Scigelova, M.; Makarov, A. Orbitrap Mass Analyzer—Overview and Applications in Proteomics. Proteomics. 2006, 6(S2), 16–21.CrossRefGoogle Scholar
  32. 32.
    Olsen, J. V.; de Godoy, L. M. F.; Li, G.; Macek, B.; Mortensen, P.; Pesch, R.; Makarov, A.; Lange, O.; Horning, S.; Mann, M. Parts per Million Mass Accuracy on an Orbitrap Mass Spectrometer via Lock Mass Injection into a C-Trap. Mol. Cell. Proteom. 2005, 4, 2010–2021.CrossRefGoogle Scholar
  33. 33.
    Denisov, E.; Kellmann, M.; Lange, O.; Makarov, A.; Strupat, K.; Zabruskov, V.; Griep-Raming, J.; Horning, S. Tandem Mass Spectrometry in an LTQ Orbitrap Mass Spectrometer using Multiple Fills. Proceedings of the 55th ASMS Conference; Indianapolis, IN, May, 2007, W081.Google Scholar
  34. 34.
    Olsen, J. O.; Macek, B.; Lange, O.; Makarov, A.; Horning, S.; Mann, M. Higher-Energy C-Trap Dissociation for Peptide Modification Analysis. Nat. Methods. 2007, 4, 709–712.CrossRefGoogle Scholar
  35. 35.
    Strupat, K.; amoc, E.; Kellmann, M.; Lange, O.; Denisov, E.; Makarov, A.; Moehring, T. Data-Dependent Analysis of Phosphopeptides Upon Higher Energy Collision Induced Dissociation (HCD) Using a Hybrid Linear Ion Trap -Orbitrap MS. Proceedings of the 55th ASMS Conference; Indianapolis, IN, May, 2007, Mo392.Google Scholar
  36. 36.
    Fountain, S.; Lee, H.; Lubman, D. Ion Fragmentation Activated by Matrix-Assisted Laser Desorption/Ionization in an Ion-Trap/Reflectron Time-of-Flight Device. Rapid Commun. Mass Spectrom. 1994, 8, 407–416.CrossRefGoogle Scholar
  37. 37.
    Vinh, J.; Haddad, I.; Ndiaye, S.; Hesse, A. M.; Rossier, J. NanoLC-MALDI Orbitrap Coupling Evaluation: An Attempt to Optimize the Acquisition Strategy. Proceedings of the 56th ASMS Conference; Denver, CO, June, 2008, TPBB 067.Google Scholar
  38. 38.
    Blethrow, J.; Zabrouskov, V.; Viner, R.; Glavy, J. Analysis of Mitotic Phosphorylation Sites in the Nuclear Pore Complex using a MALDI LTQ Orbitrap Mass Spectrometer. Proceedings of the 56th ASMS Conference; Denver CO, June, 2008, TPBB 071.Google Scholar
  39. 39.
    Fournier, I.; Tabet, J. C.; Bolbach, G. Irradiation Effects in MALDI and Surface Modifications: Part I: Sinapinic Acid Monocrystals. Int. J. Mass Spectrom. 2002, 219, 515–523.CrossRefGoogle Scholar
  40. 40.
    Fournier, I.; Marinach, C.; Tabet, J. C.; Bolbach, G. Irradiation Effects in MALDI, Ablation, Ion Production, and Surface Modifications: Part II. 2,5-Dihydroxybenzoic Acid Monocrystals. J. Am. Soc. Mass Spectrom. 2003, 14, 893–899.CrossRefGoogle Scholar
  41. 41.
    Westmacott, G.; Ens, W.; Hillenkamp, F.; Dreisewerd, K.; Schürenberg, M. The Influence of Laser Fluence on Ion Yield in Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2002, 221, 67–81.CrossRefGoogle Scholar
  42. 42.
    Dreisewerd, K.; Schürenberg, M.; Karas, M.; Hillenkamp, F. Influence of the Laser Intensity and Spot Size on the Desorption of Molecules and Ions in Matrix-Assisted Laser Desorption/Ionization with a Uniform Beam Profile. Int. J. Mass Spectrom. Ion Processes 1995, 14, 127–148.CrossRefGoogle Scholar
  43. 43.
    Vorm, O.; Roepstorff, P.; Mann, M. Matrix Surfaces Made by Fast Evaporation Yield Improved Resolution and Very High Sensitivity in MALDI TOF. Anal. Chem. 1994, 66, 3281–3287.CrossRefGoogle Scholar
  44. 44.
    Fenyo, D.; Wang, Q.; DeGrasse, J. A.; Padovan, J. C.; Cadene, M.; Chait, B. T. Video Article: MALDI Sample Preparation: The Ultra Thin Layer Method. URL: http://www.jove.com/index/Details.stp?ID=192.Google Scholar
  45. 45.
    Strupat, K.; Karas, M.; Hillenkamp, F. 2,5-Dihydroxybenzoic Acid: A New Matrix for Laser Desorption-Ionization Mass Spectrometry. Int. J. Mass Spectrom. Ion Processes 1991, 111, 89–102.CrossRefGoogle Scholar
  46. 46.
    Karas, M.; Ehring, H.; Nordhoff, E.; Stahl, B.; Strupat, K.; Hillenkamp, F.; Grehl, M.; Krebs, B. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry with Additives to 2,5-Dihydroxybenzoic Acid. Org. Mass Spectrom. 1993, 28, 1476–1481.CrossRefGoogle Scholar
  47. 47.
    Kussmann, M.; Nordhoff, E.; Rahbek-Nielsen, H.; Haebel, S.; Rossel-Larsen, M.; Jakobsen, L.; Gobom, J.; Mirgorodskaya, E.; Kroll-Kristensen, A.; Palm, L.; Roepstorff, P. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Sample Preparation Techniques Designed for Various Peptide and Protein Analytes. J. Mass Spectrom. 1997, 32, 593–601.CrossRefGoogle Scholar
  48. 48.
    MALDI MS, a Practical Guide to Instrumentation, Methods and Applications; Hillenkamp, F.; Peter-Katalinic, J., Eds. ISBN-13: 978-3-527-31440-9. Wiley-VCH: Weinheim, 2007.Google Scholar
  49. 49.
    Beavis, R. C.; Chaudhary, T.; Chait, B. T. Cyano-4-Hydroxycinnamic Acid as a Matrix for MALDI MS. Org. Mass Spectrom. 1992, 27, 156–158.CrossRefGoogle Scholar
  50. 50.
    Xiang, F.; Beavis, R. C. Growing Protein-Doped Sinapinic Acid Crystals for Laser Desorption: An Alternative Preparation Method for Difficult Samples. Org. Mass Spectrom. 1993, 28, 1424–1429.CrossRefGoogle Scholar
  51. 51.
    Xiang, F.; Beavis, R. C.; Ens, W. A Method to Increase Contaminant Tolerance in Protein Matrix Assisted Laser Desorption/Ionization by the Fabrication of Thin Protein-Doped Polycrystalline Films. Rapid Commun. Mass Spectrom. 1994, 8, 199–204.CrossRefGoogle Scholar
  52. 52.
    Wu, K. J.; Steding, A.; Becker, C. H. Matrix-Assisted Laser Desorption Time-of-Flight Mass Spectrometry of Oligonucleotides Using 3-Hydroxypicolinic Acid as an Ultraviolet-Sensitive Matrix. Rapid Commun. Mass Spectrom. 1993, 7, 142–146.CrossRefGoogle Scholar
  53. 53.
    Chen, X.; Carroll, J. A.; Beavis, R. C. Near-Ultraviolet-Induced Matrix-Assisted Laser Desorption/Ionization as a Function of Wavelength. J. Am. Soc. Mass Spectrom. 1998, 9, 885–891.CrossRefGoogle Scholar
  54. 54.
    Horneffer, V.; Dreisewerd, K.; Lüdemann, H. C.; Hillenkamp, F.; Läge, M.; Strupat, K. Is the Incorporation of Analytes into Matrix Crystals a Prerequisite for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry?: A Study of Five Positional Isomers of Dihydroxybenzoic acid. Int. J. Mass Spectrom. 1999, 185/187, 859–870.CrossRefGoogle Scholar
  55. 55.
    Allwood, D. A.; Dreyfus, R. W.; Perera, I. K.; Dyer, P. E.; Dyer, P. E. UV Optical Absorption of Matrices Used for Matrix-Assisted Laser Desorption/Ionization. Rapid Commun. Mass Spectrom. 1996, 10, 1575–1578.CrossRefGoogle Scholar
  56. 56.
    Zenobi, R.; Knochenmuss, R. Ion Formation in MALDI Mass Spectrometry. Mass Spectrom. Rev. 1999, 17, 337–366.CrossRefGoogle Scholar
  57. 57.
    See: http://www1.qiagen.com.Google Scholar
  58. 58.
    Makarov, A.; Denisov, E.; Lange, O.; Horning, S. Dynamic Range of Mass Accuracy in LTQ Orbitrap Hybrid Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2006, 17, 977–982.CrossRefGoogle Scholar
  59. 59.
    Krutchinsky, A.; Chait, B. T. On the Origin of Chemical Noise in MALDI. J. Am. Soc. Mass Spectrom. 2002, 13, 129–134.CrossRefGoogle Scholar
  60. 60.
    O’Conner, P.; Costello, C. E. A High Pressure MALDI-FTMS Ion Source for Thermal Stabilization of Labile Molecules. Rapid Commun. Mass Spectrom. 2001, 15, 1862–1868.CrossRefGoogle Scholar
  61. 61.
    Denisov, E.; Strupat, K.; Makarov, A. A.; Zabrouskov, V. Pushing Intact Protein Detection Limits of the Orbitrap Mass Analyzer. Proceedings of the 55th ASMS Conference; Indianapolis, IN, May, 2007.Google Scholar
  62. 62.
    Schuerenberg, M.; Luebbert, C.; Eickhoff, H.; Kalkum, M.; Lehrrach, H.; Nordhoff, E. Prestructured MALDI Sample Supports. Anal. Chem. 2000, 72, 3436–3442.CrossRefGoogle Scholar
  63. 63.
    Nordhoff, E.; Schuerenberg, M.; Thiele, G.; Lübbert, C.; Kloeppel, K. D.; Theiss, D.; Lehrach, H.; Gobom, J. Sample Preparation Protocols for MALDI-MS of Peptides and Oligonucleotides Using Prestructured Sample Supports. Int. J. Mass Spectrom. 2003, 226, 163–180.CrossRefGoogle Scholar
  64. 64.
    Nordhoff, E.; Lehrach, H.; Gobom, J. Exploring the Limits and Losses in MALDI Sample Preparation of amol Amounts of Peptide Mixtures. Int. J. Mass Spectrom. 2007, 268, 139–146.CrossRefGoogle Scholar
  65. 65.
    Mass Frontier is a software developed by HighChem. Mistrik R. and coworkers, Slovak Republic.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • Kerstin Strupat
    • 1
  • Viatcheslav Kovtoun
    • 2
  • Huy Bui
    • 2
  • Rosa Viner
    • 2
  • George Stafford
    • 2
  • Stevan Horning
    • 1
  1. 1.Thermo Fisher Scientific (Bremen) GmbHBremenGermany
  2. 2.Thermo Fisher Scientific San JoseSan JoseUSA

Personalised recommendations