Multiple-reaction monitoring liquid chromatography mass spectrometry for monosaccharide compositional analysis of glycoproteins

  • Loubna A. Hammad
  • Marwa M. Saleh
  • Milos V. Novotny
  • Yehia Mechref
Article

Abstract

A simple, sensitive, and rapid quantitative LC-MS/MS assay was designed for the simultaneous quantification of free and glycoprotein bound monosaccharides using a multiple reaction monitoring (MRM) approach. This study represents the first example of using LC-MS/MS methods to simultaneously quantify all common glycoprotein monosaccharides, including neutral and acidic monosaccharides. Sialic acids and reduced forms of neutral monosaccharides are efficiently separated using a porous graphitized carbon column. Neutral monosaccharide molecules are detected as their alditol acetate anion adducts [M + CH3CO2] using electrospray ionization in negative ion MRM mode, while sialic acids are detected as deprotonated ions [M − H]. The new method exhibits very high sensitivity to carbohydrates with limits of detection as low as 1 pg for glucose, galactose, and mannose, and below 10 pg for other monosaccharides. The linearity of the described approach spans over three orders of magnitudes (pg to ng). The method effectively quantified monosaccharides originating from as little as 1 µg of fetuin, ribonuclease B, peroxidase, and α 1-acid glycoprotein human (AGP) with results consistent with literature values and with independent CE-LIF measurements. The method is robust, rapid, and highly sensitive. It does not require derivatization or postcolumn addition of reagents.

Supplementary material

13361_2011_200601224_MOESM1_ESM.doc (242 kb)
Supplementary material, approximately 248 KB.

References

  1. 1.
    Sears, P.; Wong, C.-H. Carbohydrate mimetics: A new strategy for tackling the problem of carbohydrate-mediated biological recognition. Angew. Chem. Int. Ed. 1999, 38, 2301–2324.CrossRefGoogle Scholar
  2. 2.
    Lemieux, R. U.; Venot, A. P.; Spohr, U.; Bird, P.; Mandal, G.; Morishima, N.; Hindsgaul, O.; Bundle, D. R. The binding of the B human blood group determinant by hybridoma monoclonal antibodies. Can. J. Chem. 1985, 63, 2664–2668.CrossRefGoogle Scholar
  3. 3.
    Ferrier, R. J. An Historical Overview. In The Organic Chemistry of Sugars, Levy, D.E., Fügedi, P., Eds.; Taylor & Francis: Boca Raton, 2006; p. 17.Google Scholar
  4. 4.
    Suami, T.; Ogawa, S. Chemistry of carba-sugars (pseudo-sugars) and their derivatives. Adv. Carbohydr. Chem. Biochem. 1990, 48, 21–90.CrossRefGoogle Scholar
  5. 5.
    Simmonds, M. S. J.; Kite, G. C.; Porter, E. A. Taxonomic Distribution of Iminosugars in Plants and Their Biological Activities. In Iminosugars as Glycosidase Inhibitors, Nojirimycin and Beyond, Stütz, A.E., Ed.; Wiley: Weinheim, 1999; p. 22.Google Scholar
  6. 6.
    Bartolozzi, F.; Bertazza, G.; Bassi, D.; Cristoferi, G. Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas-liquid chromatography. J. Chromatogr. A 1997, 758, 99–107.CrossRefGoogle Scholar
  7. 7.
    Crowell, E. P.; Burnett, B. B. Determination of the carbohydrate composition of wood pulps by gas chromatography of the alditol acetates. Anal. Chem. 1967, 39, 121–124.CrossRefGoogle Scholar
  8. 8.
    Mawhinney, T. P.; Feather, M. S.; Barbero, G. J.; Martinez, J. R. The rapid, quantitative determination of neutral sugars (as aldononitrile acetates) and amino sugars (as O-methyloxime acetates) in glycoproteins by gas-liquid chromatography. Anal. Biochem. 1980, 101, 112–117.CrossRefGoogle Scholar
  9. 9.
    Sweeley, C. C.; Bentley, R.; Makita, M.; Wells, W. W. Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. J. Am. Chem. Soc. 1963, 85, 2497–2507.CrossRefGoogle Scholar
  10. 10.
    Tetsuo, M.; Zhang, C.; Matsumoto, H.; Matsumoto, I. Gas chromatographic-mass spectrometric analysis of urinary sugar and sugar alcohols during pregnancy. J. Chromatogr. B 1999, 731, 111–120.CrossRefGoogle Scholar
  11. 11.
    Koizumi, K. High-performance liquid chromatographic separation of carbohydrates on graphitized carbon columns. J. Chromatogr. A 1996, 720, 119–126.CrossRefGoogle Scholar
  12. 12.
    Kwon, H.; Kim, J. Determination of monosaccharides in glycoproteins by reverse-phase high-performance liquid chromatography. Anal. Biochem. 1993, 215, 243–252.CrossRefGoogle Scholar
  13. 13.
    Wei, Y.-A.; Fang, J.-N. Studies on the chromatographic behavior of some uronic acids and neutral sugars on an amino-bonded phase column. J. Chromatogr. 1990, 513, 227–235.CrossRefGoogle Scholar
  14. 14.
    Chiesa, C.; Oneill, R. A. Capillary zone electrophoresis of oligosaccharides derivatized with various aminonaphthalene sulfonic-acids. Electrophoresis 1994, 15, 1132–1140.CrossRefGoogle Scholar
  15. 15.
    Honda, S.; Okeda, J.; Iwanaga, H.; Kawakami, S.; Taga, A.; Suzuki, S.; Imai, K. Ultramicroanalysis of reducing carbohydrates by capillary electrophoresis with laser-induced fluorescence detection as 7-nitro-2,1,3-benzoxadiazole-tagged N-methylglycamine derivatives. Anal. Biochem. 2000, 2000, 99–111.CrossRefGoogle Scholar
  16. 16.
    Liu, J. P.; Shirota, O.; Wiesler, D.; Novotny, M. V. Ultrasensitive fluorometric detection of carbohydrates as derivatives in mixtures separated by capillary electrophoresis. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 2302–2306.CrossRefGoogle Scholar
  17. 17.
    Mechref, Y.; El-Rassi, Z. Capillary zone electrophoresis of derivatized acidic monosaccharides. Electrophoresis 1994, 15, 627–634.CrossRefGoogle Scholar
  18. 18.
    Mechref, Y.; El-Rassi, Z. Analysis of carbohydrates. In Capillary Electrophoresis Theory and Practice; 2nd ed., Camilleri, P., Ed.; CRC Press: Boca Raton, 1998; p. 273–360.Google Scholar
  19. 19.
    Mechref, Y.; Novotny, M. V. Structural investigations of glycoconjugates at high sensitivity. Chem. Rev. 2002, 102, 321–370.CrossRefGoogle Scholar
  20. 20.
    Novotny, M. In High Performance Capillary Electrophoresis Vol. 146; Khaledi, M. G., Ed.: Wiley and Sons Inc.: New York, 1998; pp 729–765.Google Scholar
  21. 21.
    Plocek, J.; Novotny, M. V. Capillary zone electrophoresis of oligosaccharides derivatized with N-(4-aminobenzoyl)-L-glutamic acid for ultraviolet absorbance detection. J. Chromatogr. A 1997, 757, 215–223.CrossRefGoogle Scholar
  22. 22.
    Anumula, K. R. Quantitative determination of monosaccharides in glycoproteins by high-performance liquid chromatography with highly sensitive fluorescence detection. Anal. Biochem. 1994, 220, 275–283.CrossRefGoogle Scholar
  23. 23.
    Fu, D.; O’Neill, R. A. Monosaccharide composition analysis of oligosaccharides and glycoproteins by high-performance liquid chromatography. Anal. Biochem. 1995, 227, 377–384.CrossRefGoogle Scholar
  24. 24.
    Wu, W.; Hamase, K.; Kiguchi, M.; Yamamoto, K.; Zaitsu, K. Reversed-phase HPLC of monosaccharides in glycoproteins derivatized with aminopyrazine with fluorescence detection. Anal. Sci. 2000, 16, 919–922.CrossRefGoogle Scholar
  25. 25.
    Lamari, F. N.; Kuhn, R.; Karamanos, N. K. Derivatization of carbohydrates for chromatographic, electrophoretic, and mass spectrometric structure analysis. J. Chromatogr. B 2003, 793, 15–36.CrossRefGoogle Scholar
  26. 26.
    Wang, T.; Ham, P. K.-S.; Shi, H.; Ma, Y. Compositional monosaccharide analysis of transgenic corn glycoproteins by HPLC with fluorescence detection and LC-MS with sonic spray ionization. J. Chromatogr. Sci. 2007, 45, 200–206.CrossRefGoogle Scholar
  27. 27.
    Wei, Y.; Ding, M.-Y. Analysis of carbohydrates in drinks by high-performance liquid chromatography with a dynamically modified amino column and evaporative light scattering detection. J. Chromatogr. A 2000, 904, 113–117.CrossRefGoogle Scholar
  28. 28.
    Calull, M.; Marce, R. M.; Borrull, F. Determination of carboxylic acids, sugars, glycerol, and ethanol in wine and grape must by ion-exchange high-performance liquid chromatography with refractive index detection. J. Chromatogr. 1992, 590, 215–222.CrossRefGoogle Scholar
  29. 29.
    Martens, D. A.; Frankenberger, W. T. J. Determination of saccharides in biological materials by high-performance anion-exchange chromatography with pulsed amperometric detection. J. Chromatogr. 1991, 546, 297–309.CrossRefGoogle Scholar
  30. 30.
    Karlsson, N. G.; Hansson, G. C. Analysis of monosaccharide composition of mucin oligosaccharide alditols by high-performance anion-exchange chromatography. Anal. Biochem. 1995, 224, 538–541.CrossRefGoogle Scholar
  31. 31.
    Madigan, D.; McMurrough, I.; Smyth, M. R. Application of gradient ion chromatography with pulsed electrochemical detection to the analysis of carbohydrates in brewing. J. Am. Soc. Brew Chem. 1996, 54, 45–49.Google Scholar
  32. 32.
    Panagiotopoulos, C.; Sempere, R.; Lafont, R.; Kerherve, P. Subambient temperature effects on the separation of monosaccharides by high-performance anion-exchange chromatography with pulse amperometric detection: Application to marine chemistry. J. Chromatogr. A 2001, 920, 13–22.CrossRefGoogle Scholar
  33. 33.
    Blanco, D.; Muro, D.; Gutierrez, M. D. A comparison on pulsed amperometric detection and spectrophotometric detection of carbohydrates in cidar brandy by liquid chromatography. Anal. Chim. Acta. 2004, 517, 65–70.CrossRefGoogle Scholar
  34. 34.
    Bruggink, C.; Maurer, R.; Herrmann, H.; Cavalli, S.; Hoefler, F. Analysis of carbohydrates by anion exchange chromatography and mass spectrometry. J. Chromatogr. A 2005, 1085, 104–109.CrossRefGoogle Scholar
  35. 35.
    Clarke, M. B.; Bezabeh, D. Z.; Howard, C. T. Determination of carbohydrates in tobacco products by liquid chromatography-mass spectrometry: A comparison with ion chromatography and application to product discrimination. J. Agric. Food Chem. 2006, 54, 1975–1981.CrossRefGoogle Scholar
  36. 36.
    Liu, J.; Hsieh, Y.-Z.; Wiesler, D.; Novotny, M. Design of 3-(4-carboxybenzoyl)-2-quinolinecarboxaldehyde as a reagent for ultra-sensitive determination of primary amines by capillary electrophoresis using laser fluorescence detection. Anal. Chem. 1991, 63, 408–412.CrossRefGoogle Scholar
  37. 37.
    Stefansson, M.; Novotny, M. Electrophoretic resolution of monosaccharide enantiomers in borate-oligosaccharide complexation media. J. Am. Chem. Soc. 1993, 115, 11573–11580.CrossRefGoogle Scholar
  38. 38.
    Liu, J. P.; Osamu, O.; Novotny, M. V. Capillary electrophoresis of amino sugars with laser-induced fluorescence detection. Anal. Chem. 1991, 63, 413–417.CrossRefGoogle Scholar
  39. 39.
    Zhang, Y.; Arriaga, E.; Diedrich, P.; Hindsgaul, O.; Dovichi, N. J. Nanomolar determination of aminated sugars by capillary electrophoresis. J. Chromatogr. A 1995, 716, 221–229.CrossRefGoogle Scholar
  40. 40.
    Kohler, M.; Leary, J. LC/MS/MS of carbohydrates with postcolumn addition of metal chlorides using triaxial electrospray probe. Anal. Chem. 1995, 67, 3501–3508.CrossRefGoogle Scholar
  41. 41.
    Yang, C.; Cole, R. B. Stabilization of anionic adducts in negative ion electrospray mass spectrometry. Anal. Chem. 2002, 74, 985–991.CrossRefGoogle Scholar
  42. 42.
    Harvey, D. J. Fragmentation of negative ions from carbohydrates: Part 1: Use of nitrate and other anionic adducts for the production of negative ion electrospray spectra from N-linked carbohydrates. J. Am. Soc. Mass Spectrom. 2005, 16, 622–630.CrossRefGoogle Scholar
  43. 43.
    McIntosh, T. S.; Davis, H. M.; Matthews, D. E. A liquid chromatography-mass spectrometry method to measure stable isotopic tracer enrichments of glycerol and glucose in human serum. Anal. Biochem. 2002, 300, 163–169.CrossRefGoogle Scholar
  44. 44.
    Rogatsky, E.; Jayatillake, H.; Goswami, G.; Tomuta, V.; Stein, D. Sensitive LC MS quantitative analysis of carbohydrates by Cs+ attachment. J. Am. Soc. Mass Spectrom. 2005, 16, 1805–1811.CrossRefGoogle Scholar
  45. 45.
    Wan, E. C. H.; Yu, J. Z. Determination of sugar compounds in atmospheric aerosols by liquid chromatography combined with positive electrospray ionization mass spectrometry. J. Chromatogr. A 2006, 1107, 175–181.CrossRefGoogle Scholar
  46. 46.
    Rogatsky, E.; Tomuta, V.; Stein, D. T. L. C. /MS quantitative study of glucose by iodine attachment. Anal. Chim. Acta 2007, 591, 155–160.CrossRefGoogle Scholar
  47. 47.
    Kato, Y.; Numajiri, Y. Chloride attachment negative-ion mass spectra of sugars by combined liquid chromatography and atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. 1991, 562, 81–97.CrossRefGoogle Scholar
  48. 48.
    Guignard, C.; Jouve, L.; Bogeat-Triboulot, M. B.; Dreyer, E.; Hausman, J.-F.; Hoffmann, L. Analysis of carbohydrates in plants by high-performance anion-exchange chromatography coupled with electrospray mass spectrometry. J. Chromatogr. A 2005, 1085, 137–142.CrossRefGoogle Scholar
  49. 49.
    Liang, H. R.; Takagaki, T.; Foltz, R. L.; Bennett, P. Quantitative determination of endogenous sorbitol and fructose in human erythrocytes by atmospheric-pressure chemical ionization LC tandem mass spectrometry. J. Chromatogr. B 2005, 824, 36–44.CrossRefGoogle Scholar
  50. 50.
    Fan, J. Q.; Kondo, A.; Kato, I.; Lee, Y. C. High-performance liquid chromatography of glycopeptides and oligosaccharides on graphitized carbon columns. Anal. Biochem. 1994, 219, 375–378.CrossRefGoogle Scholar
  51. 51.
    Huang, Y.; Konse, T.; Mechref, Y.; Novotny, M. V. Matrix-assisted laser desorption/ionization mass spectrometry compatible β-elimination of O-linked oligosaccharides. Rapid Commun. Mass Spectrom. 2002, 16, 1199–1204.CrossRefGoogle Scholar
  52. 52.
    Mechref, Y.; Muzikar, J.; Novotny, M. V. Comprehensive assessment of N-glycans derived from a murine monoclonal antibody: A case for multimethodological approach. Electrophoresis 2005, 26, 2034–2046.CrossRefGoogle Scholar
  53. 53.
    Koizumi, K. High-performance liquid chromatographic separation of carbohydrates on graphitized carbon columns. J. Chromatogr. A 1996, 720, 119–126.CrossRefGoogle Scholar
  54. 54.
    Cumming, J. B.; Kebarle, P. Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A). Can. J. Chem. 1978, 56, 1.CrossRefGoogle Scholar
  55. 55.
    Shaw, C. J.; Chao, H.; Xiao, B. Determination of sialic acids by liquid chromatography-mass spectrometry. J. Chromatogr. A 2001, 913, 365–370.CrossRefGoogle Scholar
  56. 56.
    Valianpour, F.; Abeling, N. G. G. M.; Duran, M.; Huijmans, J. G. M.; Kulik, W. Quantification of free sialic acid in urine by HPLC-electrospray tandem mass spectrometry: A tool for the diagnosis of sialic acid storage disease. Clin. Chem. 2004, 50, 403–409.CrossRefGoogle Scholar
  57. 57.
    Chen, F.-T. A.; Dobashi, T. S.; Evangelista, R. A. Quantitative analysis of sugar constituents of glycoproteins by capillary electrophoresis. Glycobiology 1998, 8, 1045–1052.CrossRefGoogle Scholar
  58. 58.
    Kim, S.; Kim, S. I.; Ha, K.-S.; Leem, S.-H. An Improved method for quantitative sugar analysis of glycoproteins. Exp. Mol. Med. 2000, 32, 141–145.CrossRefGoogle Scholar
  59. 59.
    Kishino, S.; Nomura, A.; Sugawara, M.; Iseki, K.; Kakinoki, S.; Kitabatake, A.; Miyazaki, K. Purification method for α-1-acid glycoprotein with subsequent high-performance liquid chromatographic determination of monosaccharides in plasma of healthy subjects and patients with renal insufficiency. J. Chromatogr. B 1995, 672, 199–205.CrossRefGoogle Scholar
  60. 60.
    Yasuno, S.; Kokubo, K.; Kamei, M. New method for determining the sugar composition of glycoproteins, glycolipids, and oligosaccharides by high-performance liquid chromatography. Biosci. Biotechnol. Biochem. 1999, 63, 1353–1359.CrossRefGoogle Scholar
  61. 61.
    Bernard, B. A.; Newton, S. A.; Olden, K. Effect of size and location of the oligosaccharide chain on protease degradation of bovine pancreatic ribonuclease. J. Biol. Chem. 1983, 258, 12198–12202.Google Scholar
  62. 62.
    Todoroki, K.; Hayama, T.; Ijiri, S.; Kazuta, A.; Yoshida, H.; Nohta, H.; Yamaguchi, M. Rhodamine B amine as a highly sensitive fluorescence derivatization reagent for saccharides in reverse-phase liquid chromatography. J. Chromatogr. A 2004, 1038, 113–120.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • Loubna A. Hammad
    • 1
  • Marwa M. Saleh
    • 1
  • Milos V. Novotny
    • 1
  • Yehia Mechref
    • 1
  1. 1.METACyt Biochemical Analysis Center, Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations