In situ SIMS analysis and reactions of surfaces prepared by soft landing of mass-selected cations and anions using an ion trap mass spectrometer

  • Zongxiu Nie
  • Guangtao Li
  • Michael P. Goodwin
  • Liang Gao
  • Jobin Cyriac
  • R. Graham Cooks
Focus: Ion-Surface Collisions And Peptide Radical Cations


Mass-selected polyatomic cations and anions, produced by electrosonic spray ionization (ESSI), were deposited onto polycrystalline Au or fluorinated self-assembled monolayer (FSAM) surfaces by soft landing (SL), using a rectilinear ion trap (RIT) mass spectrometer. Protonated and deprotonated molecules, as well as intact cations and anions generated from such molecules as peptides, inorganic catalysts, and fluorescent dyes, were soft-landed onto the surfaces. Analysis of the modified surfaces was performed in situ by Cs+ secondary ion mass spectrometry (SIMS) using the same RIT mass analyzer to characterize the sputtered ions as that used to mass select the primary ions for SL. Soft-landing times as short as 30 s provided surfaces that yielded good quality SIMS spectra. Chemical reactions of the surfaces modified by SL were generated in an attached reaction chamber into which the surface was transferred under vacuum. For example, a surface on which protonated triethanolamine had been soft landed was silylated using vapor-phase chlorotrimethylsilane before being returned still under vacuum to the preparation chamber where SIMS analysis revealed the silyloxy functionalization. SL and vapor-phase reactions are complementary methods of surface modification and in situ surface analysis by SIMS is a simple way to characterize the products produced by either technique.


  1. 1.
    Kleyn, A. W. Ion—Surface Interactions—From Channeling to Soft-Landing. Science 1997, 275, 1440–1441.CrossRefGoogle Scholar
  2. 2.
    Pratontep, S.; Preece, P.; Xirouchaki, C.; Palmer, R. E.; Sanz-Navarro, C. F.; Kenny, S. D.; Smith, R. Scaling Relations for Implantation of Size-Selected Au, Ag, and Si Clusters into Graphite. Phys. Rev. Lett. 2003, 90, 055503.CrossRefGoogle Scholar
  3. 3.
    Wang, P.; Hadjar, O.; Laskin, J. Covalent Immobilization of Peptides on Self-Assembled Monolayer Surfaces Using Soft-Landing of Mass-Selected Ions. J. Am. Chem. Soc. 2007, 129, 8682–8683.CrossRefGoogle Scholar
  4. 4.
    Peng, W. P.; Goodwin, M.; Nie, Z. X.; Volný, M.; Ouyang, Z.; Cooks, R. G. Ion Soft Landing Using Rectilinear Ion Trap Mass Spectrometer. Anal. Chem. 2008, 80, 6640–6649.CrossRefGoogle Scholar
  5. 5.
    Volný, M.; Elam, W. T.; Ratner, B. D.; Tureček, F. Preparative Soft and Reactive Landing of Gas-Phase Ions on Plasma-Treated Metal Surfaces. Anal. Chem. 2005, 77, 4846–4853.CrossRefGoogle Scholar
  6. 6.
    Franchetti, V.; Solka, B.; Baitinger, W. E.; Amy, J. W.; Cooks, R. G. Soft Landing of Ions as a Means of Surface Modification. Int. J. Mass Spectrom. Ion Process 1977, 23, 29–35.CrossRefGoogle Scholar
  7. 7.
    Alvarez, J.; Cooks, R. G.; Barlow, S. E.; Gaspar, D. J.; Futrell, J. H.; Laskin, J. Preparation and In Situ Characterization of Surfaces Using Soft Landing in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Anal. Chem. 2005, 77, 3452–3460.CrossRefGoogle Scholar
  8. 8.
    Wang, P.; Laskin, J. Helical Peptide Arrays on Self-Assembled Monolayer Surfaces through Soft and Reactive Landing of Mass-Selected Ions. Angew. Chem. Int. Ed. 2008, 47, 6678–6680.CrossRefGoogle Scholar
  9. 9.
    Nagaoka, S.; Ikemoto, K.; Matsumoto, T.; Mitsui, M.; Nakajima, A. Thermal and Hyperthermal Collision-Energy Depositions of Transition Metal-Benzene Sandwich Complexes onto a Self-Assembled n-Octadecanethiol Monolayer. J. Chem. Phys. C 2008, 112, 6891–6899.CrossRefGoogle Scholar
  10. 10.
    Miller, S. A.; Luo, H.; Pachuta, S. J.; Cooks, R. G. Soft-Landing of Polyatomic Ions at Fluorinated Self-Assembled Monolayer Surfaces. Science 1997, 275, 1447–1450.CrossRefGoogle Scholar
  11. 11.
    Nagaoka, S.; Okada, E.; Doi, S.; Mitsui, M.; Nakajima, A. Trapping of V(benzene)2 Sandwich Clusters in a n-Alkanethiol Self-Assembled Monolayer Matrix. Eur. Phys. J. D. 2005, 34, 239–242.CrossRefGoogle Scholar
  12. 12.
    Ouyang, Z.; Takats, Z.; Blake, T. A.; Gologan, B.; Guymon, A. J.; Wiseman, J. M.; Oliver, J. C.; Jo Davisson, V.; Cooks, R. G. Preparing Protein Microarrays by Soft Landing of Mass-Selected Ions. Science 2003, 301, 1351–1354.CrossRefGoogle Scholar
  13. 13.
    Laskin, J.; Wang, P.; Hadjar, O. Soft-Landing of Peptide Ions onto Self-Assembled Monolayer Surfaces: An Overview. Phys. Chem. Chem. Phys. 2008, 10, 1079–1090.CrossRefGoogle Scholar
  14. 14.
    Washburn, M. P. Soft Landing for Protein Chips. Nat. Biotechnol. 2003, 21, 1156–1157.CrossRefGoogle Scholar
  15. 15.
    Siuzdak, G.; Bothner, B.; Yeager, M.; Brugidou, C.; Fauquet, C. M.; Hoey, K.; Chang, C. M. Mass Spectrometry and Viral Analysis. Chem. Biol. 1996, 3, 45–48.CrossRefGoogle Scholar
  16. 16.
    LaPack, M. A.; Pachuta, S. J.; Busch, K. L.; Cooks, R. G. Surface Modification by Soft Landing of Reagent Beams. Int. J. Mass Spectrom. Ion Process 1983, 53, 323–326.CrossRefGoogle Scholar
  17. 17.
    Rader, H. J.; Rouhanipou, A.; Talarico, A. M.; Palermo, V.; Samori, P.; Mullen, K. Processing of Giant Graphene Molecules by Soft Landing Mass Spectrometry. Nat. Mater. 2006, 5, 276–280.CrossRefGoogle Scholar
  18. 18.
    Volný, M.; Sengupta, A.; Wilson, C. B.; Swanson, B. D.; Davis, E. J.; Tureček, F. Surface-Enhanced Raman Spectroscopy of Soft-Landed Polyatomic Ions and Molecules. Anal. Chem. 2007, 79, 4543–4551.CrossRefGoogle Scholar
  19. 19.
    Blacken, G. B.; Volný, M.; Vaisar, T.; Sadilek, M.; Tureček, F. In Situ Enrichment of Phosphopeptides on MALDI Plates Functionalized by Reactive Landing of Zirconium(IV)-n-propoxide Ions. Anal. Chem. 2007, 79, 5449–5456.CrossRefGoogle Scholar
  20. 20.
    Wysocki, V. H.; Jones, J. H.; Ding, M. Polyatomic Ion/Surface Collisions at Self-Assembled Monolayer Films. J. Am. Chem. Soc. 1991, 113, 8969–8970.CrossRefGoogle Scholar
  21. 21.
    Cooks, R. G.; Ast, T.; Pradeep, T.; Wysocki, V. Reactions of Ions with Organic Surfaces. Acc. Chem. Res. 1994, 27, 316–323.CrossRefGoogle Scholar
  22. 22.
    Smith, D. L.; Wysocki, V. H.; Colorado, R., Jr.; Shmakova, O. E.; Graupe, M.; Lee, T. R. Low-Energy Ion-surface Collisions Characterize Alkyl- and Fluoroalkyl-Terminated Self-Assembled Monolayers on Gold. Langmuir 2002, 18, 3895–3902.CrossRefGoogle Scholar
  23. 23.
    Hadjar, O.; Wang, P.; Futrell, J. H.; Dessiaterik, Y.; Zhu, Z. H.; Cowin, J. P.; Iedema, M. J.; Laskin, J. Design and Performance of an Instrument for Soft Landing of Biomolecular Ions on Surfaces. Anal. Chem. 2007, 79, 6566–6574.CrossRefGoogle Scholar
  24. 24.
    Wang, P.; Hadjar, O.; Gassman, P. L.; Laskin, J. Reactive Landing of Peptide Ions on Self-Assembled Monolayer Surfaces: An Alternative Approach for Covalent Immobilization of Peptides on Surfaces. Phys. Chem. Chem. Phys. 2008, 10, 1512–1522.CrossRefGoogle Scholar
  25. 25.
    Laskin, J.; Wang, P.; Hadjar, O.; Futrell, J. H.; Alvarez, J.; Cooks, R. G. Charge Retention by Peptide Ions Soft-Landed onto Self-Assembled Monolayer Surfaces. Int. J. Mass Spectrom. Ion Process 2007, 265, 237–243.CrossRefGoogle Scholar
  26. 26.
    Alvarez, J.; Futrell, J. H.; Laskin, J. Soft-Landing of Peptides onto Self-Assembled Monolayer Surfaces. J. Phys. Chem. A 2006, 110, 1678–1687.CrossRefGoogle Scholar
  27. 27.
    Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103–1169.CrossRefGoogle Scholar
  28. 28.
    Reimer, U.; Reineke, U.; Mergener, J. S. Peptide Arrays: From Macro to Micro. Curr. Opin. Biotechnol. 2002, 13, 315–320.CrossRefGoogle Scholar
  29. 29.
    Volný, M.; Elam, W. T.; Branca, A.; Ratner, B. D.; Tureček, F. Preparative Soft and Reactive Landing of Multiply Charged Protein Ions on a Plasma-Treated Metal Surface. Anal. Chem. 2005, 77, 4890–4896.CrossRefGoogle Scholar
  30. 30.
    Song, Q. Y.; Smith, S. A.; Gao, L.; Volný, M.; Ouyang, Z.; Cooks, R. G. Mass Selection of Ions from Beams Using Waveform Isolation in Radiofrequency Quadrupoles. Anal. Chem. 2009, 81, 1833–1840.CrossRefGoogle Scholar
  31. 31.
    Blake, T. A.; Ouyang, Z.; Wiseman, J. M.; Takats, Z.; Guymon, A. J.; Kothari, S.; Cooks, R. G. Preparative Linear Ion Trap Mass Spectrometer for Separation and Collection of Purified Proteins and Peptides in Arrays Using Ion Soft Landing. Anal. Chem. 2004, 76, 6293–6305.CrossRefGoogle Scholar
  32. 32.
    Nanita, S. C.; Takats, Z.; Myung, S.; Clemmer, D. E.; Cooks, R. G. Chiral Enrichment of Serine via Formation, Dissociation and Soft-Landing of Octameric Cluster Ions. J. Am. Soc. Mass Spectrom. 2004, 15, 1360–1365.CrossRefGoogle Scholar
  33. 33.
    Gologan, B.; Takats, Z.; Alvarez, J.; Wiseman, J. M.; Talaty, N.; Ouyang, Z.; Cooks, R. G. Ion Soft-Landing into Liquids: Protein Identification, Separation, and Purification with Retention of Biological Activity. J. Am. Soc. Mass Spectrom. 2004, 15, 1874–1884.CrossRefGoogle Scholar
  34. 34.
    Shen, J. W.; Yim, Y. H.; Feng, B. B.; Grill, V.; Evans, C.; Cooks, R. G. Soft-Landing of Ions onto Self-Assembled Hydrocarbon and Fluorocarbon Monolayer Surfaces. Int. J. Mass Spectrom 1999, 182–183, 423–435.CrossRefGoogle Scholar
  35. 35.
    Nagaoka, S.; Matsumoto, T.; Ikemoto, K.; Mitsui, M.; Nakajima, A. Soft-Landing Isolation of Multidecker V2(benzene)3 Complexes in an Organic Monolayer Matrix: An Infrared Spectroscopy and Thermal Desorption Study. J. Am. Chem. Soc. 2007, 129, 1528–1529.CrossRefGoogle Scholar
  36. 36.
    Nagaoka, S.; Matsumoto, T.; Okada, E.; Mitsui, M.; Nakajima, A. Room-Temperature Isolation of V(benzene)(2) Sandwich Clusters via Soft-Landing into n-Alkanethiol Self-Assembled Monolayers. J. Phys. Chem. B 2006, 110, 16008–16017.CrossRefGoogle Scholar
  37. 37.
    Shaffer, S. A.; Prior, D. C.; Anderson, G. A.; Udseth, H. R.; Smith, R. D. An Ion Funnel Interface for Improved Ion Focusing and Sensitivity Using Electrospray Ionization Mass Spectrometry. Anal. Chem. 1998, 70, 4111–4119.CrossRefGoogle Scholar
  38. 38.
    Shaffer, S. A.; Tolmachev, A.; Prior, D. C.; Anderson, G. A.; Udseth, H. R.; Smith, R. D. Characterization of a New Electrodynamic Ion Funnel Interface for Electrospray Ionization Mass Spectrometry. Anal. Chem. 1999, 71, 2957–2964.CrossRefGoogle Scholar
  39. 39.
    Hadjar, O.; Futrell, J. H.; Laskin, J. First Observation of Charge Reduction and Desorption Kinetics of Multiply Protonated Peptides Soft Landed onto Self-Assembled Monolayer Surfaces. J. Phys. Chem. C 2007, 111, 18220–18225.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • Zongxiu Nie
    • 1
  • Guangtao Li
    • 1
  • Michael P. Goodwin
    • 1
  • Liang Gao
    • 1
  • Jobin Cyriac
    • 1
  • R. Graham Cooks
    • 1
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations