The measurement of charge for induction-based fluidic MALDI dispense event and nanoliter volume verification in real time

  • Brent Hilker
  • Kevin J. Clifford
  • Andrew D. Sauter
  • Andrew D. Sauter
  • Julie P. Harmon
Application Note

Abstract

This study preliminarily investigates whether nanoliter volumes of concentrated polar liquids and organic monomers launched to targets using induction based fluidics (IBF) can be verified through the real time charge measurements. We show that using a nanoliter IBF dispensing device and nanocoulomb meter, charge measurements made on nanoliter drops in real time are correlated with surface area following Gauss’s Law. We infer the “induction only” formation of the double layer showing the ability to determine nanoliter volumes, nearly instantaneously, in real time. We discuss the implications that these observations may have for on improving/monitoring MALDI quantitation and its quality control.

Supplementary material

13361_2011_200601064_MOESM1_ESM.doc (158 kb)
Supplementary material, approximately 161 KB.

References

  1. 1.
    Sauter, A. D. Precise Electrokinetic Delivery of Minute Volumes of Liquid. U.S. Patent 6 149 815, 2000; and U.S. pending patents of Sauter, A. D.: 60/574,104; 60/759,787; 60/881,532; and 61/011,178.Google Scholar
  2. 2.
    Delgado, A. V.; Gonzalez-Caballero, F.; Hunter, R. J.; Koopal, L. K.; Lyklema, J. Measurement and Interpretation of Electrokinetic Phenomena. J. Colloid Interface Sci. 2007, 309, 194–224.CrossRefGoogle Scholar
  3. 3.
    Sauter, A. D., Jr. The Nanoliter Syringes (ASMS MALDI poster). Am. Laboratory 2007, February.Google Scholar
  4. 4.
    Tu, T.; Sauter, A. D., 3rd; Sauter, A. D., Jr.; Gross, M. L. Improving the Signal Intensity and Sensitivity of MALDI Mass Spectrometry by Using Nanoliter Spots Deposited by Induction-based Fluidics. J. Am. Soc. Mass Spectrosc. 2008, 19, 1086–1090.CrossRefGoogle Scholar
  5. 5.
    Hilker, B.; Clifford, K. J.; Sauter, A. D., Jr.; Sauter, A. D., 3rd; Gauthier, T.; Harmon, J. P. Electric Field Enhanced Sample Preparation for Synthetic Polymer MALDI-TOF Mass Spectrometry via Induction Based Fluidics (IBF). Polymer 2009, 50, 1015–1024.CrossRefGoogle Scholar
  6. 6.
    Yergey, A. L. National Institutes of Health, Bethesda, MD. Personal communication, 2008.Google Scholar
  7. 7.
    Colquhoun, D. R.; Schwab, K. J.; Cole, R. N.; Halden, R. U. Detection of Norovirus Capsid Protein in Authentic Standards and in Stool Extracts by Matrix-Assisted Laser Desorption Ionization and Nanospray Mass Spectrometry. Appl. Environ. Microbiol. 2006, 72, 2749–2755.CrossRefGoogle Scholar
  8. 8.
    Fernandez, F. M.; Cody, R. B.; Green, M. D.; Hampton, C. Y.; McGready, R.; Sengaloundeth, S.; White, N. J.; Newton, P. N. Characterization of Solid Counterfeit Drug Samples by Desorption Electrospray Ionization and Direct-Analysis-in-Real-Time Coupled to Time-of-Flight Mass Spectrometry. ChemMedChem 2006, 1, 702–705.CrossRefGoogle Scholar
  9. 9.
    Ding, C. Qualitative and Quantitative DNA and RNA Analysis by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Methods Mol. Biol. 2006, 336, 59–71.Google Scholar
  10. 10.
    Rozylo, J. K.; Berezkin, V. G.; Malinowska, I.; Jamrozek-Manko, A. Technical Problems with the Application of Solutes to Chromatographic Plates in TLC. J. Planar Chromatogr. 2001, 14, 272–276.CrossRefGoogle Scholar
  11. 11.
    Datta, S., Conlisk, A. T. Role of Multivalent Ions and Electrical Double Layer Overlap in Electroosmotic Nanoflows. In Proceedings of the 47th AIAA Aerospace Sciences Meeting, January 2009, Orlando, FL.Google Scholar
  12. 12.
    Hitzer, E. Early Works on the Hagen-Poiseuille Flow. Memoirs of the Faculty of Engineering, Univ. of Fukui 2001, 49, 45–53.Google Scholar
  13. 13.
    Kebarle, P.; Tang, L. From Ions in Solutions to Ions in the Gas Phase: The Mechanism of Electrospray Mass Spectrometry. Anal. Chem. 1993, 65, 972–986.Google Scholar
  14. 14.
    Song, S. P.; Li, B. Q. A Hybrid Boundary/Finite Element Method for Simulating Viscous Flows and Shapes of Droplets in Electric Fields. Int. J. Comput. Fluid Dynamics 2001, 15, 293–308.CrossRefGoogle Scholar
  15. 15.
    Millikan, R. A. On the Elementary Electric Charge and the Avogadro Constant. Phys. Rev. II 1913, 2, 109.CrossRefGoogle Scholar
  16. 16.
    Amster, I. J. Fourier Transform Mass Spectrometry. J. Mass Spectrom. 1996, 31, 1325–1337.CrossRefGoogle Scholar
  17. 17.
    Sauter, A. D., Jr.; Sauter, A. D., 3rd. Electric Zip Tips™ Preliminary Results. J. Assoc. Lab. Automation 2002, 7, 52–55.CrossRefGoogle Scholar
  18. 18.
    Halliday, D.; Resnick, R. Physics. Wiley: New York, 1962.Google Scholar
  19. 19.
    Ferrante, J.; Smith, J. R. Theory of the Bimetallic Surface. Phys. Rev. B. 1985, 31, 3427–3434.CrossRefGoogle Scholar
  20. 20.
    Amin, M. S. Advanced Faraday Cage Measurements of Charge, Short-Circuit Current and Open-Circuit Voltage. M.S. Thesis. Massachusetts Institute of Technology: Cambridge, MA, September 2004.Google Scholar
  21. 21.
    Thomson, B. A.; Iribarne, J. V. Field Induced Ion Evaporation from Liquid Surfaces at Atmospheric Pressure. J. Chem. Phys. 1979, 71, 4451–4463.CrossRefGoogle Scholar
  22. 22.
    Low Level Measurements Handbook: Precision DC Current, Voltage, and Resistance Measurements, 6th edition. Keithley Instruments, Inc.: Cleveland, OH, 2008; pp 2.44–2.66.Google Scholar
  23. 23.
    Seraglia, R.; Teatino, A.; Traldi, P. MALDI Mass Spectrometry in the Solution of Some Forensic Problems. Forensic Sci. Int. 2004, 146S, S83-S85.CrossRefGoogle Scholar
  24. 24.
    Han, K. N. Fundamentals of Aqueous Metallurgy. Society for Mining, Metallurgy and Exploration: Littleton, CO, 2002; pp 25–27.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • Brent Hilker
    • 2
  • Kevin J. Clifford
    • 2
  • Andrew D. Sauter
    • 1
  • Andrew D. Sauter
    • 1
  • Julie P. Harmon
    • 2
  1. 1.Nanoliter LLCHendersonUSA
  2. 2.Department of ChemistryUniversity of South FloridaTampa

Personalised recommendations