Performance evaluation of a high-field orbitrap mass analyzer

  • Alexander Makarov
  • Eduard Denisov
  • Oliver Lange
Focus: The Orbitrap


A new design of the Orbitrap mass analyzer is presented. Higher frequencies of ion oscillations and hence higher resolving power over fixed acquisition time are achieved by decreasing the gap between the inner and outer Orbitrap electrodes, thus providing higher field strength for a given voltage. Experimental results confirm maximum FWHM resolving power in excess of 350,000 at m/z 524 and 600,000 at m/z 195, isotopic resolution of proteins above 40 kDa, and a single-shot dynamic range of 25,000. It was also found that mass shifts in the new design depend very little on space charge inside the analyzer. This performance was achieved using higher voltages and by careful balancing of construction tolerances and operation parameters, which appeared to vary in narrower ranges of tuning than for a standard Orbitrap analyzer.


Central Electrode Outer Electrode Monoisotopic Peak Linear Trap Isotopic Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Marshall, A. G.; Guan, S. Advantages of High Magnetic Field for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Rapid Commun. Mass Spectrom. 1996, 10(14), 1819–1823.CrossRefGoogle Scholar
  2. 2.
    Marshall, A. G.; Hendrickson, C. L.; Jackson, G. S. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: A Primer. Mass Spectrom. Rev. 1998, 17, 1–35.CrossRefGoogle Scholar
  3. 3.
    Makarov, A. Electrostatic Axially Harmonic Orbital Trapping: A High-Performance Technique of Mass Analysis. Anal. Chem. 2000, 72, 1156–1162.CrossRefGoogle Scholar
  4. 4.
    Makarov, A.; Denisov, E.; Kholomeev, A.; Balschun, W.; Lange, O.; Horning, S.; Strupat, K. Performance Evaluation of a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer. Anal. Chem. 2006, 78, 2113–2120.CrossRefGoogle Scholar
  5. 5.
    Wenger, C. D.; Boyne, M. T.; Ferguson, J. T.; Robinson, D. E.; Kelleher, N. L. Versatile Online-Offline Engine for Automated Acquisition of High-Resolution Tandem Mass Spectra. Anal. Chem. 2008, 80, 8055–8063.CrossRefGoogle Scholar
  6. 6.
    Schaub, T. M.; Hendrickson, C. L.; Horning, S.; Quinn, J. P.; Senko, M. W.; Marshall, A. G. High-Performance Mass Spectrometry: Fourier Transform Ion Cyclotron Resonance at 14. 5 Tesla. Anal. Chem. 2008, 80, 3985–3990.CrossRefGoogle Scholar
  7. 7.
    Schwartz, J. C.; Senko, M. W.; Syka, J. E. P. A Two-Dimensional Quadrupole Ion Trap Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2002, 13, 659–669.CrossRefGoogle Scholar
  8. 8.
    Makarov, A.; Denisov, E.; Lange, O.; Horning, S. Dynamic Range of Mass Accuracy in LTQ Orbitrap Hybrid Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2006, 17, 977–982.CrossRefGoogle Scholar
  9. 9.
    Wieghaus, A.; Froehlich, U.; Malek, R.; Horning, S. The Grid Cell: A New Cell Design for Reduced Z-Axis Ejection in Fourier Transform Ion Cyclotron Mass Spectrometry. In Proceedings of the 54th ASMS Conference; Seattle, WA. May, 2006.Google Scholar
  10. 10.
    Jeffries, J. B.; Barlow, S. E.; Dunn, G. H. Theory of Space-Charge Shifts of Ion Cyclotron Resonance Frequencies. Int. J. Mass Spectrom Ion Processes. 1983, 54, 169–187.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • Alexander Makarov
    • 1
  • Eduard Denisov
    • 1
  • Oliver Lange
    • 1
  1. 1.Thermo Fisher Scientific (Bremen) GmbHBremenGermany

Personalised recommendations