A novel fourier transform ion cyclotron resonance mass spectrometer with improved ion trapping and detection capabilities

  • Nathan K. Kaiser
  • Gunnar E. Skulason
  • Chad R. Weisbrod
  • James E. Bruce
Articles

Abstract

A novel Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer has been developed for improved biomolecule analysis. A flared metal capillary and an electrodynamic ion funnel were installed in the source region of the instrument for improved ion transmission. The transfer quadrupole is divided into 19 segments, with the capacity for independent control of DC voltage biases for each segment. Restrained ion population transfer (RIPT) is used to transfer ions from the ion accumulation region to the ICR cell. The RIPT ion guide reduces mass discrimination that occurs as a result of time-of-flight effects associated with gated trapping. Increasing the number of applied DC bias voltages from 8 to 18 increases the number of ions that are effectively trapped in the ICR cell. The RIPT ion guide with a novel voltage profile applied during ion transfer provides a 3- to 4-fold increase in the number of ions that are trapped in the ICR cell compared with gated trapping for the same ion accumulation time period. A novel ICR cell was incorporated in the instrument to reduce radial electric field variation for ions with different z-axis oscillation amplitudes. With the ICR cell, called trapping ring electrode cell (TREC), we can tailor the shape of the trapping electric fields to reduce dephasing of coherent cyclotron motion of an excited ion packet. With TREC, nearly an order of magnitude increase in sensitivity is observed. The performance of the instrument with the combination of RIPT, TREC, flared inlet, and ion funnel is presented.

References

  1. 1.
    He, F.; Emmett, M. R.; Hakansson, K.; Hendrickson, C. L.; Marshall, A. G. Theoretical and Experimental Prospects for Protein Identification Based Solely on Accurate Mass Measurement. J. Proteome Res. 2004, 3, 61–67.CrossRefGoogle Scholar
  2. 2.
    Clauser, K. R.; Baker, P.; Burlingame, A. L. Role of Accurate Mass Measurement (±10 ppm) in Protein Identification Strategies Employing MS or MS/MS and Database Searching. Anal. Chem. 1999, 71, 2871–2882.CrossRefGoogle Scholar
  3. 3.
    Comisarow, M. B.; Marshall, A. G. Fourier Transform Ion Cyclotron Resonance Spectroscopy. Chem. Phys. Lett. 1974, 25, 282–283.CrossRefGoogle Scholar
  4. 4.
    Comisarow, M. B.; Marshall, A. G. Frequency-Sweep Fourier Transform Ion Cyclotron Resonance Spectroscopy. Chem. Phys. Lett. 1974, 26, 489–490.CrossRefGoogle Scholar
  5. 5.
    Amster, I. J. Fourier Transform Mass Spectrometry. J. Mass Spectrom. 1996, 31, 1325–1337.CrossRefGoogle Scholar
  6. 6.
    He, F.; Hendrickson, C. L.; Marshall, A. G. Baseline Mass Resolution of Peptide Isobars: A Record for Molecular Mass Resolution. Anal. Chem. 2001, 73, 647–650.CrossRefGoogle Scholar
  7. 7.
    Williams, D. K. Jr.; Muddiman, D. C. Parts-per-Billion Mass Measurement Accuracy Achieved through the Combination of Multiple Linear Regression and Automatic Gain Control in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Anal. Chem. 2007, 79, 5058–5063.CrossRefGoogle Scholar
  8. 8.
    Shi, S. D. H.; Hendrickson, C. L.; Marshall, A. G. Counting Individual Sulfur Atoms in a Protein by Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Experimental Resolution of Isotopic Fine Structure in Proteins. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 11532–11537.CrossRefGoogle Scholar
  9. 9.
    McLafferty, F. W.; Fridriksson, E. K.; Horn, D. M.; Lewis, M. A.; Zubarev, R. A. Techview: Biochemistry, Biomolecule Mass Spectrometry. Science 1999, 284, 1289–1290.CrossRefGoogle Scholar
  10. 10.
    Hughey, C. A.; Rodgers, R. P.; Marshall, A. G. Resolution of 11,000 Compositionally Distinct Components in a Single Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrum of Crude Oil. Anal. Chem. 2002, 74, 4145–4149.CrossRefGoogle Scholar
  11. 11.
    Marshall, A. G.; Hendrickson, C. L. Fourier Transform Ion Cyclotron Resonance Detection: Principles and Experimental Configurations. Int. J. Mass Spectrom. 2002, 215, 59–75.CrossRefGoogle Scholar
  12. 12.
    Peurrung, A. J.; Kouzes, R. T. Long-Term Coherence of the Cyclotron Mode in a Trapped Ion Cloud. Phys. Rev. E. Stat. Phys Plasmas Fluids Relat. Interdisc. Topics 1994, 49, 4362–4368.Google Scholar
  13. 13.
    McIver, R. T. Jr.; Ledford, E. B. Jr.; Miller, J. S. Proposed Method for Mass Spectrometric Analysis for Ultra-Low Vapor Pressure Compounds. Anal. Chem. 1975, 47, 692–697.CrossRefGoogle Scholar
  14. 14.
    Mitchell, D. W. Realistic Simulation of the Ion Cyclotron Resonance Mass Spectrometer Using a Distributed Three-Dimensional Particle-in-Cell Code. J. Am. Soc. Mass Spectromy. 1999, 10, 136–152.CrossRefGoogle Scholar
  15. 15.
    Mitchell, D. W.; Smith, R. D. Prediction of a Space Charge Induced Upper Molecular Mass Limit Towards Achieving Unit Mass Resolution in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Mass Spectrom. 1996, 31, 771–790.CrossRefGoogle Scholar
  16. 16.
    Marshall, A. G.; Guan, S. Advantages of High Magnetic Field for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 1819–1823.CrossRefGoogle Scholar
  17. 17.
    Schaub, T. M.; Hendrickson, C. L.; Horning, S.; Quinn, J. P.; Senko, M. W.; Marshall, A. G. High-Performance Mass Spectrometry: Fourier Transform Ion Cyclotron Resonance at 14.5 Tesla. Anal. Chem. 2008, 80, 3985–3990.CrossRefGoogle Scholar
  18. 18.
    Mitchell, D. W.; Smith, R. D. Cyclotron Motion of Two Coulombically Interacting Ion Clouds with Implications to Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry. Phys. Rev. E Stat. Phys Plasmas Fluids Relat. Interdisc. Topics 1995, 52, 4366–4386.Google Scholar
  19. 19.
    Bogdanov, B.; Smith, R. D. Proteomics by FTICR Mass Spectrometry: Top Down and Bottom Up. Mass Spectrom. Rev. 2005, 24, 168–200.CrossRefGoogle Scholar
  20. 20.
    Kelleher, N. L.; Lin, H. Y.; Valaskovic, G. A.; Aaserud, D. J.; Fridriksson, E. K.; McLafferty, F. W. Top Down versus Bottom Up Protein Characterization by Tandem High-Resolution Mass Spectrometry. J. Am. Chem. Soc. 1999, 121, 806–812.CrossRefGoogle Scholar
  21. 21.
    Sze, S. K.; Ge, Y.; Oh, H.; McLafferty, F. W. Top-Down Mass Spectrometry of a 29-kDa Protein for Characterization of Any Posttranslational Modification to within One Residue. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 1774–1779.CrossRefGoogle Scholar
  22. 22.
    Guan, S.; Marshall, A. G. Ion Traps for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Principles and Design of Geometric and Electric Configurations. Int. J. Mass Spectrom. Ion Process. 1995, 146/147, 261–296.CrossRefGoogle Scholar
  23. 23.
    Anderson, J. S.; Vartanian, H.; Laude, D. A. Evolution of Trapped Ion Cells in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Trends Anal. Chem. 1994, 13, 234–239.CrossRefGoogle Scholar
  24. 24.
    Vartanian, V. H.; Anderson, J. S.; Laude, D. A. Advances in Trapped Ion Cells for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Mass Spectrom. Rev. 1995, 14, 1–19.CrossRefGoogle Scholar
  25. 25.
    Caravatti, P.; Allemann, M. The Infinity Cell: A New Trapped-Ion Cell with Radiofrequency Covered Trapping Electrodes for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Org. Mass Spectrom. 1991, 26, 514–518.CrossRefGoogle Scholar
  26. 26.
    Beu, S. C.; Laude, D. A. Jr. Elimination of Axial Ejection during Excitation with a Capacitively Coupled Open Trapped-Ion Cell for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 1992, 64, 177–180.CrossRefGoogle Scholar
  27. 27.
    Senko, M. W.; Hendrickson, C. L.; Emmett, M. R.; Shi, S. D. H.; Marshall, A. G. External Accumulation of Ions for Enhanced Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 970–976.CrossRefGoogle Scholar
  28. 28.
    Gorshkov, M. V.; Masselon, C. D.; Anderson, G. A.; Udseth, H. R.; Harkewicz, R.; Smith, R. D. A Dynamic Ion Cooling Technique for FTICR Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 1169–1173.CrossRefGoogle Scholar
  29. 29.
    Caravatti, P. U.S. Patent 4 924 089, 1990.Google Scholar
  30. 30.
    Easterling, M. L.; Pitsenberger, C. C.; Kulkarni, S. S.; Taylor, P. K.; Amster, I. J. A 4.7 Tesla Internal MALDI-FTICR Instrument for High Mass Studies: Performance and Methods. Int. J. Mass Spectrom. Ion Process. 1996, 157/158, 97–113.CrossRefGoogle Scholar
  31. 31.
    Stults, J. T. Minimizing Peak Coalescence: High-Resolution Separation of Isotope Peaks in Partially Deamidated Peptides by Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 1997, 69, 1815–1819.CrossRefGoogle Scholar
  32. 32.
    Solouki, T.; Emmett, M. R.; Guan, S.; Marshall, A. G. Detection, Number, and Sequence Location of Sulfur-Containing Amino Acids and Disulfide Bridges in Peptides by Ultrahigh-Resolution MALDI FTICR Mass Spectrometry. Anal. Chem. 1997, 69, 1163–1168.CrossRefGoogle Scholar
  33. 33.
    Nikolaev, E. N.; Miluchihin, N.; Inoue, M. Evolution of an Ion Cloud in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer during Signal Detection: Its Influence on Spectral Line Shape and Position. Int. J. Mass Spectrom. Ion Process. 1995, 148, 145–157.CrossRefGoogle Scholar
  34. 34.
    Wong, R. L.; Amster, I. J. Sub Part-per-Million Mass Accuracy by Using Stepwise-External Calibration in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2006, 17, 1681–1691.CrossRefGoogle Scholar
  35. 35.
    Winger, B. E.; Hofstadler, S. A.; Bruce, J. E.; Udseth, H. R.; Smith, R. D. High-Resolution Accurate Mass Measurements of Biomolecules Using a New Electrospray Ionization Ion Cyclotron Resonance Mass Spectrometer. J. Am. Soc. Mass Spectrom. 1993, 4, 566–577.CrossRefGoogle Scholar
  36. 36.
    Guan, S.; Kim, H. S.; Marshall, A. G.; Wahl, M. C.; Wood, T. D.; Xiang, X. Shrink-Wrapping an Ion Cloud for High-Performance Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Chem. Rev. 1994, 94, 2161–2182.CrossRefGoogle Scholar
  37. 37.
    Guan, S.; Gorshkov, M. V.; Marshall, A. G. Circularly Polarized Quadrature Excitation for Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry. Chem. Phys. Lett. 1992, 198, 143–148.CrossRefGoogle Scholar
  38. 38.
    Wilcox, B. E.; Hendrickson, C. L.; Marshall, A. G. Improved Ion Extraction from a Linear Octopole Ion Trap: SIMION Analysis and Experimental Demonstration. J. Am. Soc. Mass Spectrom. 2002, 13, 1304–1312.CrossRefGoogle Scholar
  39. 39.
    Wong, R. L.; Amster, I. J. Combining Low and High Mass Ion Accumulation for Enhancing Shotgun Proteome Analysis by Accurate Mass Measurement. J. Am. Soc. Mass Spectrom. 2006, 17, 205–212.CrossRefGoogle Scholar
  40. 40.
    O’Connor, P. B.; Duursma, M. C.; van Rooij, G. J.; Heeren, R. M. A.; Boon, J. J. Correction of Time-of-Flight Shifted Polymeric Molecular Weight Distributions in Matrix-Assisted Laser Desorption/Ionization Fourier Transform Mass Spectrometry. Anal. Chem. 1997, 69, 2751–2755.CrossRefGoogle Scholar
  41. 41.
    Dey, M.; Castoro, J. A.; Wilkins, C. L. Determination of Molecular Weight Distributions of Polymers by MALDI-FTMS. Anal. Chem. 1995, 67, 1575–1579.CrossRefGoogle Scholar
  42. 42.
    Belov, M. E.; Rakov, V. S.; Nikolaev, E. N.; Goshe, M. B.; Anderson, G. A.; Smith, R. D. Initial Implementation of External Accumulation Liquid Chromatography/Electrospray Ionization Fourier Transform Ion Cyclotron Resonance with Automated Gain Control. Rapid Commun. Mass Spectrom. 2003, 17, 627–636.CrossRefGoogle Scholar
  43. 43.
    Belov, M. E.; Nikolaev, E. N.; Anderson, G. A.; Udseth, H. R.; Conrads, T. P.; Veenstra, T. D.; Masselon, C. D.; Gorshkov, M. V.; Smith, R. D. Design and Performance of an ESI Interface for Selective External Ion Accumulation Coupled to a Fourier Transform Ion Cyclotron Mass Spectrometer. Anal. Chem. 2001, 73, 253–261.CrossRefGoogle Scholar
  44. 44.
    Prior, D. C.; Price, J.; Bruce, J. E. U.S. Patent 6 455 8646, 2002.Google Scholar
  45. 45.
    Wu, S.; Zhang, K.; Kaiser, N. K.; Bruce, J. E.; Prior, D. C.; Anderson, G. A. Incorporation of a Flared Inlet Capillary Tube on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2006, 17, 772–779.CrossRefGoogle Scholar
  46. 46.
    Shaffer, S. A.; Prior, D. C.; Anderson, G. A.; Udseth, H. R.; Smith, R. D. An Ion Funnel Interface for Improved Ion Focusing and Sensitivity Using Electrospray Ionization Mass Spectrometry. Anal. Chem. 1998, 70, 4111–4119.CrossRefGoogle Scholar
  47. 47.
    Shaffer, S. A.; Tolmachev, A.; Prior, D. C.; Anderson, G. A.; Udseth, H. R.; Smith, R. D. Characterization of an Improved Electrodynamic Ion Funnel Interface for Electrospray Ionization Mass Spectrometry. Anal. Chem. 1999, 71, 2957–2964.CrossRefGoogle Scholar
  48. 48.
    Kaiser, N. K.; Skulason, G. E.; Weisbrod, C. R.; Wu, S.; Zhang, K.; Prior, D. C.; Buschbach, M. A.; Anderson, G. A.; Bruce, J. E. Restrained Ion Population Ttransfer: A Novel Ion Transfer Method for Mass Spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 1–10.CrossRefGoogle Scholar
  49. 49.
    Weisbrod, C. R.; Kaiser, N. K.; Skulason, G. E.; Bruce, J. E. Trapping Ring Electrode Cell (TREC): A Novel FT-ICR Mass Spectrometer Cell for Improved Signal-to-Noise and Resolving Power. Anal. Chem. 2008, 80, 6545–6553.CrossRefGoogle Scholar
  50. 50.
    Gooden, J. K.; Rempel, D. L.; Gross, M. L. Evaluation of Different Combinations of Gated Trapping, RF-Only Mode and Trap Compensation for In-Field MALDI Fourier Transform Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 1109–1115.CrossRefGoogle Scholar
  51. 51.
    Naito, Y.; Fujiwara, M.; Inoue, M. Improvement of the Electric Field in the Cylindrical Trapped-Ion Cell. Int. J. Mass Spectrom. Ion Process. 1992, 120, 179–192.CrossRefGoogle Scholar
  52. 52.
    Senko, M. W.; Canterbury, J. D.; Guan, S.; Marshall, A. G. A High-Performance Modular Data System for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 1839–1844.CrossRefGoogle Scholar
  53. 53.
    Anderson, G. A.; Bruce, J. E.; Smith, R. D. ICR-2LS, Richland, WA, 1996.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • Nathan K. Kaiser
    • 1
  • Gunnar E. Skulason
    • 1
  • Chad R. Weisbrod
    • 1
  • James E. Bruce
    • 1
  1. 1.Department of ChemistryWashington State UniversityPullmanUSA
  2. 2.Department of Genome SciencesUniversity of WashingtonSeattle

Personalised recommendations