Measurement of neuropeptides in crustacean hemolymph via MALDI mass spectrometry

  • Ruibing Chen
  • Mingming Ma
  • Limei Hui
  • Jiang Zhang
  • Lingjun LiEmail author


Neuropeptides are often released into circulatory fluid (hemolymph) to act as circulating hormones and regulate many physiological processes. However, the detection of these low-level peptide hormones in circulation is often complicated by high salt interference and rapid degradation of proteins and peptides in crude hemolymph extracts. In this study, we systematically evaluated three different neuropeptide extraction protocols and developed a simple and effective hemolymph preparation method suitable for MALDI MS profiling of neuropeptides by combining acid-induced abundant protein precipitation/depletion, ultrafiltration, and C18 micro-column desalting. In hemolymph samples collected from the crab Cancer borealis, several secreted neuropeptides have been detected, including members from at least five neuropeptide families, such as RFamide, allatostatin, orcokinin, tachykinin-related peptide (TRP), and crustacean cardioactive peptide (CCAP). Furthermore, two TRPs were detected in the hemolymph collected from food-deprived animals, suggesting the potential role of these neuropeptides in feeding regulation. In addition, a novel peptide with a Lys-Phe-amide C-terminus was identified and de novo sequenced directly from the Cancer borealis hemolymph sample. To better characterize the hemolymph peptidome, we also identified several abundant peptide signals in C. borealis hemolymph that were assigned to protein degradation products. Collectively, our study describes a simple and effective sample preparation method for neuropeptide analysis directly from crude crustacean hemolymph. Numerous endogenous neuropeptides were detected, including both known ones and new peptides whose functions remain to be characterized.


Collision Induce Dissociation Crustacean Hyperglycemic Hormone Sinus Gland Hemolymph Sample MALDI Mass Spectrometr 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

13361_2011_200400708_MOESM1_ESM.doc (737 kb)
Supplementary material, approximately 755 KB.


  1. 1.
    Phlippen, M. K.; Webster, S. G.; Chung, J. S.; Dircksen, H. Ecdysis of Decapod Crustaceans is Associated with a Dramatic Release of Crustacean Cardioactive Peptide into the Hemolymph. J. Exp. Biol. 2000, 203, 521–536.Google Scholar
  2. 2.
    Turrigiano, G. G.; Selverston, A. I. A Cholecystokinin-Like Hormone Activates a Feeding-Related Neural Circuit in Lobster. Nature 1990, 344, 866–868.CrossRefGoogle Scholar
  3. 3.
    Bodnar, R. J. Endogenous Opiates and Behavior: 2006. Peptides 2007, 28, 2435–2513.CrossRefGoogle Scholar
  4. 4.
    Marder, E.; Bucher, D. Understanding Circuit Dynamics Using the Stomatogastric Nervous System of Lobsters and Crabs. Annu. Rev. of. Physiol. 2007, 69, 291–316.CrossRefGoogle Scholar
  5. 5.
    Cruz-Bermudez, N. D.; Marder, E. Multiple Modulators Act on the Cardiac Ganglion of the Crab, Cancer borealis. J. Exp. Biol. 2007, 210, 2873–2884.CrossRefGoogle Scholar
  6. 6.
    McGaw, I. J.; McMahon, B. R. The FMRFamide-related Peptides F1 and F2 Alter Hemolymph Distribution and Cardiac Output in the Crab. Cancer magister. Biol. Bull. 1995, 188, 186–196.Google Scholar
  7. 7.
    Zudaire, E.; Simpson, S. J.; Montuenga, L. M. Effects of Food Nutrient Content, Insect Age and Stage in the Feeding Cycle on the FMRFamide Immunoreactivity of Diffuse Endocrine Cells in the Locust Gut. J. Exp. Biol. 1998, 201, 2971–2979.Google Scholar
  8. 8.
    Chung, J. S.; Webster, S. G. Dynamics of In Vivo Release of Molt-Inhibiting Hormone and Crustacean Hyperglycemic Hormone in the Shore Crab. Carcinus maenas. Endocrinology 2005, 146, 5545–5551.CrossRefGoogle Scholar
  9. 9.
    Lorenzon, S.; Edomi, P.; Giulianini, P. G.; Mettulio, R.; Ferrero, E. A. Role of Biogenic Amines and cHH in the Crustacean Hyperglycemic Stress Response. J. Exp. Biol. 2005, 208, 3341–3347.CrossRefGoogle Scholar
  10. 10.
    Serrano, L.; Blanvillain, G.; Soyez, D.; Charmantier, G.; Grousset, E.; Aujoulat, F.; Spanings-Pierrot, C. Putative Involvement of Crustacean Hyperglycemic Hormone Isoforms in the Neuroendocrine Mediation of Osmoregulation in the Crayfish. Astacus leptodactylus. J. Exp. Biol. 2003, 206, 979–988.CrossRefGoogle Scholar
  11. 11.
    Li, L.; Kelley, W. P.; Billimoria, C. P.; Christie, A. E.; Pulver, S. R.; Sweedler, J. V.; Marder, E. Mass Spectrometric Investigation of the Neuropeptide Complement and Release in the Pericardial Organs of the Crab. Cancer borealis. J. Neurochem. 2003, 87, 642–656.Google Scholar
  12. 12.
    Li, L.; Pulver, S. R.; Kelley, W. P.; Thirumalai, V.; Sweedler, J. V.; Marder, E. Orcokinin Peptides in Developing and Adult Crustacean Stomatogastric Nervous Systems and Pericardial Organs. J. Comp. Neurol. 2002, 444, 227–244.CrossRefGoogle Scholar
  13. 13.
    Fu, Q.; Goy, M. F.; Li, L. Identification of Neuropeptides from the Decapod Crustacean Sinus Glands using Nanoscale Liquid Chromatography Tandem Mass Spectrometry. Biochem. Biophys. Res. Commun. 2005, 337, 765–778.CrossRefGoogle Scholar
  14. 14.
    Ma, M.; Chen, R.; Sousa, G. L.; Bors, E. K.; Kwiatkowski, M. A.; Goiney, C. C.; Goy, M. F.; Christie, A. E.; Li, L. Mass Spectral Characterization of Peptide Transmitters/Hormones in the Nervous System and Neuroendocrine Organs of the American Lobster. Homarus americanus. Gen Comp Endocrinol. 2008, 156, 395–409.CrossRefGoogle Scholar
  15. 15.
    Horn, E. C.; Kerr, M. S. Hemolymph Protein and Copper Concentrations of Adult Blue Crabs (Callinectes sapidus Rathbun). Biol. Bull. 1963, 125, 499–507.CrossRefGoogle Scholar
  16. 16.
    Durliat, M. Immunochemical Study of the Proteins of Various Tissues in Crustacea (Decapoda): Nature, Role, Origin. Arch. Int. Physiol. Biochim. 1983, 91, 297–332.CrossRefGoogle Scholar
  17. 17.
    Fastner, S.; Predel, R.; Kahnt, J.; Schachtner, J.; Wegener, C. A Simple Purification Protocol for the Detection of Peptide Hormones in the Hemolymph of Individual Insects by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 23–28.CrossRefGoogle Scholar
  18. 18.
    Christie, A. E.; Kutz-Naber, K. K.; Stemmler, E. A.; Klein, A.; Messinger, D. I.; Goiney, C. C.; Conterato, A. J.; Bruns, E. A.; Hsu, Y. W. A.; Li, L.; Dickinson, P. S. Midgut Epithelial Endocrine Cells are a Rich Source of the Neuropeptides APSGFLGMRamide (Cancer borealis Tachykinin-Related Peptide Ia) and GYRKPPFNGSIFamide (Gly1-SIFamide) in the Crabs Cancer borealis, Cancer magister, and Cancer productus. J. Exp. Biol. 2007, 210, 699–714.CrossRefGoogle Scholar
  19. 19.
    Kwok, R.; Tobe, S. S. Hemolymph Clotting in Crustaceans: Implications for Neuropeptide Extraction from Invertebrate Hemolymph. Peptides 2006, 27, 590–596.CrossRefGoogle Scholar
  20. 20.
    Hsu, J. L.; Huang, S. Y.; Chow, N. H.; Chen, S. H. Stable-Isotope Dimethyl Labeling for Quantitative Proteomics. Anal. Chem. 2003, 75, 6843–6852.CrossRefGoogle Scholar
  21. 21.
    DeKeyser, S. S.; Li, L. Matrix-Assisted Laser Desorption/Ionization Fourier Transform Mass Spectrometry Quantitation via in Cell Combination. Analyst 2006, 131, 281–290.CrossRefGoogle Scholar
  22. 22.
    Ji, C.; Li, L. Quantitative Proteome Analysis Using Differential Stable Isotopic Labeling and Microbore LC-MALDI MS and MS/MS. J. Proteome Res. 2005, 4, 734–742.CrossRefGoogle Scholar
  23. 23.
    Christie, A. E.; Lundquist, C. T.; Nassel, D. R.; Nusbaum, M. P. Two Novel Tachykinin-Related Peptides from the Nervous System of the Crab. Cancer borealis. J. Exp. Biol. 1997, 200, 2279–2294.Google Scholar
  24. 24.
    Fu, Q.; Kutz, K. K.; Schmidt, J. J.; Hsu, Y. W.; Messinger, D. I.; Cain, S. D.; de la Iglesia, H. O.; Christie, A. E.; Li, L. Hormone Complement of the Cancer productus Sinus Gland and Pericardial Organ: an Anatomical and Mass Spectrometric Investigation. J. Comp. Neurol. 2005, 493, 607–626.CrossRefGoogle Scholar
  25. 25.
    Terwilliger, N. B.; Dangott, L.; Ryan, M. Cryptocyanin, a Crustacean Molting Protein: Evolutionary Link with Arthropod Hemocyanins and Insect Hexamerins. PNAS 1999, 96, 2013–2018.CrossRefGoogle Scholar
  26. 26.
    Huybrechts, J.; Nusbaum, M. P.; Bosch, L. V.; Baggerman, G.; De Loof, A.; Schoofs, L. Neuropeptidomic Analysis of the Brain and Thoracic Ganglion from the Jonah Crab. Cancer borealis. Biochem. Biophys. Res. Commun. 2003, 308, 535–544.CrossRefGoogle Scholar
  27. 27.
    Behrens, H.; Chen, R.; Li, L. Combining Microdialysis, NanoLC-MS, and MALDI-TOF/TOF to Monitor Neuropeptide Secretion in the Crab. Cancer borealis. Anal. Chem. 2008, 80, 6949–6958.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • Ruibing Chen
    • 1
  • Mingming Ma
    • 1
  • Limei Hui
    • 1
  • Jiang Zhang
    • 1
  • Lingjun Li
    • 1
    Email author
  1. 1.Department of Chemistry and School of PharmacyUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations