An experimental and theoretical investigation into the hydrolysis of dichloro(ethylenediamine)platinum(II) via electrospray mass spectrometry and density functional theory

  • Akihiko Yoshikawa
  • Stephan B. H. Bach
  • Grant N. Merrill
Article

Abstract

Dichloro(ethylenediamine)platinum(II), Pt(en)Cl2, was dissolved in H2O and D2O, and the resulting aqueous solutions were electrosprayed into a quadrupole ion-trap mass spectrometer. A series of major and minor ionic hydrolysis products were detected. These ions were then subjected to collision-induced dissociation. As an aid in interpreting the experimental results, density functional theory calculations were carried out. These computations permitted the structures and energetics associated with the hydrolysis products to be determined. An understanding of the hydrolysis of PtenCl2 and related coordination complexes is essential in the rational design of metal-based drugs.

References

  1. 1.
    Rosenberg, B.; Van Camp, L.; Trosko, J. R.; Mansour, V. A. Platinum Compounds: A New Class of Potent Antitumor Agents. Nature 1969, 222, 385.CrossRefGoogle Scholar
  2. 2.
    Sherman, S. E.; Lippard, S. J. Structural Aspects of Platinum Anticancer Drug Interactions with DNA. Chem. Rev. 1987, 87, 1153–1181.CrossRefGoogle Scholar
  3. 3.
    Platinum-Based Drugs in Cancer Therapy; Kendall, L. R.; Farrell, N. P., Eds. Humana Press: Totowa, NJ, 2000.Google Scholar
  4. 4.(a)
    Fuertes, M. A.; Alonso, C.; Perez, J. M. Biochemical Modulation of Cisplatin Mechanisms of Action: Enhancement of Antitumor Activity and Circumvention of Drug Resistance. Chem. Rev. 2003, 103, 645–662.CrossRefGoogle Scholar
  5. 4.(b)
    Kasparkova, J.; Zehnulova, J.; Farrell, N.; Brabec, V. DNA Interstrand Cross-links of the Novel Antitumor Trinuclear Platinum Complex BBR3464: Conformation, Recognition by High Mobility Group Domain Proteins, and Nucleotide Excision Repair. J. Biol. Chem. 2002, 277, 48076–48086.CrossRefGoogle Scholar
  6. 4.(c)
    Wyatt, K. S.; Harrison, K. N.; Jensen, C. M. Release of Platinum from Cysteine Residues Induced by N,S-Donor Chelation. Inorg. Chem. 1992, 31, 3867–3868.CrossRefGoogle Scholar
  7. 4.(d)
    Martin, R. B. Platinum Complexes: Hydrolysis and Binding to N(7) and N(1) of Purines; Wiley VCH: New York, 1999.Google Scholar
  8. 5.
    Djuran, M. I.; Lempers, E. L. M.; Reedijk, J. Reactivity of Chloro- and Aqua(Diethylenetriamine) Platinum(II) Ions with Glutathione, S-Methylglutathione, and Guanosine 5′-Monophosphate in Relation to the Antitumor Activity and Toxicity of Platinum Complexes. Inorg. Chem. 1991, 30, 2648–2652.CrossRefGoogle Scholar
  9. 6.(a)
    Bach, S. B. H.; Sepeda, T. G.; Merrill, G. N.; Walmsley, J. A.. J. Am. Soc. Mass Spectrom. 2005, 16, 1461–1469.CrossRefGoogle Scholar
  10. 6.(b)
    Bach, S. B. H.; Green, C. E.; Nagore, L. I.; Sepeda, T. G.; Merrill, G. N. Complexes of Dichloro(Ethylenediamine)Palladium(II) Observed from Aqueous Solutions by Electrospray Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18, 769–777.CrossRefGoogle Scholar
  11. 7.
    Rochon, F. D.; Buculei, V. Multinuclear Magnetic Resonance Spectroscopy and Crystal Structures of Iodo-bridged Dinuclear Pt(II) Complexes with Amines. Inorg. Chim. Acta 2005, 358, 3919–3926.CrossRefGoogle Scholar
  12. 8.(a)
    Henderson, W.; Sabat, M. Platinum(II)- and Palladium(II)-Amide Complexes [M{NC(O)CH2CH2CH2}2L2] Derived from 2-Azetidinone (b-Propiolactam); a Synthetic, Electrospray Mass Spectrometric and X-Ray Crystallographic Study. Polyhedron 1997, 16, 1663–1677.CrossRefGoogle Scholar
  13. 8.(b)
    Vrkic, A. K.; O’Hair, R. A. J. Gas Phase Ion Chemistry of Para-Substituted Benzene Diazonium Ions, Their Salt Clusters and Their Related Phenyl Cations. Int. J. Mass Spectrom. 2002, 218, 131–160.CrossRefGoogle Scholar
  14. 9.
    Shukla, A. K.; Futrell, J. H. Tandem Mass Spectrometry: Dissociation of Ions by Collisional Activation. J. Mass Spectrom. 2000, 35, 1069–1090.CrossRefGoogle Scholar
  15. 10.(a)
    Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. 1988, A38, 3098–3100.CrossRefGoogle Scholar
  16. 10.(b)
    Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. 1988, B37, 785–789.CrossRefGoogle Scholar
  17. 10.(c)
    Becke, A. D. A New Mixing of Hartree-Fock and Local-Density-Functional Theories. J. Chem. Phys. 1993, 98, 1372–1377.CrossRefGoogle Scholar
  18. 11.(a)
    Stevens, W. J.; Basch, H.; Krauss, M. J. Compact Effective Potentials and Efficient Shared-Exponent Basis Sets for the First- and Second-Row Atoms. J. Chem. Phys. 1984, 81, 6026–6033.CrossRefGoogle Scholar
  19. 11.(b)
    Stevens, W. J.; Krauss, M. J.; Basch, H.; Jasien, P. G. Relativistic Compact Effective Potentials and Efficient, Shared-Exponent Basis Sets for the Third-, Fourth-, and Fifth-Row Atoms. Canad. J. Chem. 1992, 70, 612–630.CrossRefGoogle Scholar
  20. 11.(c)
    Cundari, T. R.; Stevens, W. J. Effective Core Potential Methods for the Lanthanides. J. Chem. Phys. 1993, 98, 5555–5565.CrossRefGoogle Scholar
  21. 12.
    Hariharan, P. C.; Pople, J. A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theor. Chim. Acta. 1973, 28, 213–222.CrossRefGoogle Scholar
  22. 13.
    Pierotti, R. A. A Scaled Particle Theory of Aqueous and Nonaqueous Solutions. Chem. Rev. 1976, 76, 717–726.CrossRefGoogle Scholar
  23. 14.
    Langlet, J.; Claverie, P.; Caillet, J.; Pullman, A. Improvements of the Continuum Model. 1: Applications to the Calculation of the Vaporization Thermodynamic Quantities of Nonassociated Liquids. J. Phys. Chem. 1988, 92, 1617–1631.CrossRefGoogle Scholar
  24. 15.
    Amovilli, C.; Mennucci, B. Self-Consistent Field Calculation of Pauli Repulsion and Dispersion Contributions to the Solvation Free Energy in the Polarizable Continuum Model. J. Phys. Chem. B 1997, 101, 1051–1057.CrossRefGoogle Scholar
  25. 16.
    Mennucci, B.; Tomasi, J. Continuum Solvation Models: A New Approach to the Problem of Solute’s Charge Distribution and Cavity Boundaries. J. Chem. Phys. 1997, 106, 5151–5158.CrossRefGoogle Scholar
  26. 17.
    Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Montgomery, J.; Dupuis, M. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14, 1347–1363.CrossRefGoogle Scholar
  27. 18.
    Coley, R. F.; Martin, D. S. Kinetics and Equilibria for the Acid Hydrolysis of Dichloro(Ethylenediamine)Platinum(II). Inorg. Chim. Acta. 1973, 7, 573–577.CrossRefGoogle Scholar
  28. 19.
    Costa, L. A. S.; Rocha, W. R.; De Almeida, W. B.; Dos Santos, H. F. The Hydrolysis Process of the cis-Dichloro(Ethylenediamine)Platinum(II): A Theoretical Study. J. Chem. Phys. 2003, 118, 10584–10592.CrossRefGoogle Scholar
  29. 20.
    Costa, L. A. S.; Rocha, W. R.; De Almeida, W. B.; Dos Santos, H. F. The Solvent Effect on the Aquation Processes of the cis-Dichloro(Ethylenediamine)Platinum(II) Using Continuum Solvation Models. Chem. Phys. Lett. 2004, 387, 182–187.CrossRefGoogle Scholar
  30. 21.(a)
    Møller, C.; Plesset, M. S. Note on the Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934, 46, 618–622.CrossRefGoogle Scholar
  31. 21.(b).
    Binkley, J. S.; Pople, J. A. Møller-Plesset Theory for Atomic State Energies. Int. J. Quantum Chem. 1975, 9, 229–236.CrossRefGoogle Scholar
  32. 22.
    Henderson, W.; Nicholson, B. K.; McCaffrey, L. J. Applications of Electrospray Mass Spectrometry in Organometallic Chemistry. Polyhedron 1998, 17, 4291–4313.CrossRefGoogle Scholar
  33. 23.
    Somorjai, G. A.; Rupprechter, G. The Flexible Surface: Molecular Studies Explain the Extraordinary Diversity of Surface Chemical Properties. J. Chem. Edu. 1998, 75, 162–176.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • Akihiko Yoshikawa
    • 1
  • Stephan B. H. Bach
    • 1
  • Grant N. Merrill
    • 1
  1. 1.Department of ChemistryThe University of Texas at San Antonio, San AntonioSan AntoniaUSA

Personalised recommendations