Melanin from epidermal human melanocytes: Study by pyrolytic GC/MS


Pigmentation of human skin is determined by the presence of melanin, the polymeric pigment that is produced in melanocytes and transferred to adjacent keratinocytes. Epidermal melanocytes produce two distinct types of melanin pigments: eumelanin, composed mainly of indole-type monomers, and pheomelanin that contains benzothiazine-type backbone. Eumelanin protects skin against UV-induced damages, whereas pheomelanin is believed to act as a potent UV photosensitizer and promote carcinogenesis. In this study, pyrolysis in combination with gas chromatography and mass spectrometry (Py-GC/MS) was applied for structural studies of the epidermal pigment isolated from the cultured human melanocytes. The analysis was preceded by investigations of DOPA-originated synthetic eumelanin and pheomelanin standards. This allowed determination of pyrolytic markers for both types of melanin pigments. To obtain additional information on the natural pigment structure, the samples were thermally degraded in the presence of tetramethylammonium hydroxide as the derivatizing agent. It was shown that the analyzed pigment from normal human epidermal melanocytes derived from moderately pigmented skin is of eumelanin type with little incorporation of a pheomelanin component. The results indicate that Py-GC/MS is a rapid and efficient technique for the differentiation of epidermal melanin types and may be an alternative to commonly used methods based on chemical degradation.


  1. 1.

    Slominski, A.; Tobin, D. J.; Shibahara, S.; Wortsman, J. Melanin Pigmentation in Mammalian Skin and Its Hormonal Regulation. Physiol. Rev 2004, 84, 1155–1228.

  2. 2.

    Ito, S. A Chemist’s View of Melanogenesis. Pigment Cell Res 2003, 16, 230–236.

  3. 3.

    Wakamatsu, K.; Kavanagh, R.; Kadekaro, A. L.; Terzieva, S.; Sturm, R. A.; Leachman, S.; Abdel-Malek, Z.; Ito, S. Diversity of Pigmentation in Cultured Human Melanocytes is Due to Differences in the Type as Well as Quantity of Melanin. Pigment Cell Res 2006, 19, 154–162.

  4. 4.

    Gilchrest, B. A.; Eller, M. S.; Geller, A. C.; Yaar, M. The Pathogenesis of Melanoma Induced by Ultraviolet Radiation. N. Engl. J. Med 1999, 340, 1341–1348.

  5. 5.

    Brenner, M.; Hearing, V. J. The Protective Role of Melanin Against UV Damage in Human Skin. Photochem. Photobiol 2008, 84, 539–549.

  6. 6.

    Wenczl, E.; Van der Schans, G. P.; Roza, L.; Kolb, R. M.; Timmerman, A. J.; Smit, N. P. M.; Pavel, S.; Schothorst, A. A. (Pheo)melanin Photosensitizes UVA-Induced DNA Damage in Cultured Human Melanocytes. J. Invest. Dermatol 1998, 111, 678–682.

  7. 7.

    Vincensi, M. R.; d’Ischia, M.; Napolitano, A.; Procaccini, E. M.; Riccio, G.; Monfrecola, G.; Santoianni, P.; Prota, G. Phaeomelanin versus Eumelanin as a Chemical Indicator of Ultraviolet Sensitivity in Fair-Skinned Subjects at Risk for Melanoma: A Pilot Study. Melanoma Res 1998, 8, 53–58.

  8. 8.

    Takeuchi, S.; Zhang, W.; Wakamatsu, K.; Ito, S.; Hearing, V. J.; Kraemer, K. H.; Brash, D. E. Melanin Acts as a Potent UVB Photosensitizer to Cause an Atypical Mode of Cell Death in Murine Skin. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 15076–15081.

  9. 9.

    Hennessy, A.; Oh, C.; Diffey, B.; Wakamatsu, K.; Ito, S.; Rees, J. Eumelanin and Pheomelanin Concentrations in Human Epidermis Before and After UVB Irradiation. Pigment Cell Res. 2005, 18, 220–223.

  10. 10.

    Ito, S.; Wakamatsu, K. Quantitative Analysis of Eumelanin and Pheomelanin in Humans, Mice, and Other Animals: A Comparative Review. Pigment Cell Res. 2003, 16, 523–531.

  11. 11.

    Panzella, L.; Manini, P.; Monfrecola, G.; d’Ischia, M.; Napolitano, A. An Easy-to-Run Method for Routine Analysis of Eumelanin and Pheomelanin in Pigmented Tissues. Pigment Cell Res. 2006, 20, 128–133.

  12. 12.

    Di Donato, P.; Napolitano, A. 1,4-Benzothiazines as Key Intermediates in the Biosynthesis of Red Hair Pigment Pheomelanins. Pigment Cell Res. 2003, 16, 532–539.

  13. 13.

    Wakamatsu, K.; Ito, S. Advanced Chemical Methods in Melanin Determination. Pigment Cell Res. 2002, 15, 174–183.

  14. 14.

    Dworzański, J. P.; Meuzelaar, H. L. C. Pyrolysis Mass Spectrometry, Methods. In Encyclopedia of Spectroscopy and Spectrometry, Lindon, J. C.; Tranter, G. E.; Holmes, J. L., Eds.; Academic Press: San Diego, CA, 2000; p. 1906.

  15. 15.

    Dzierżęga-Lęcznar, A.; Kurkiewicz, S.; Stępień, K.; Chodurek, E.; Wilczok, T.; Arzberger, T.; Riederer, P.; Gerlach, M. GC/MS Analysis of Thermally Degraded Neuromelanin from the Human Substantia Nigra. J. Am. Soc. Mass Spectrom. 2004, 15, 920–926.

  16. 16.

    Dzierżęga-Lęcznar, A.; Kurkiewicz, S.; Stępień, K.; Chodurek, E.; Riederer, P.; Gerlach, M. Structural Investigations of Neuromelanin by Pyrolysis-Gas Chromatography/Mass Spectrometry. J. Neural Transm. 2006, 113, 729–734.

  17. 17.

    Dworzański, J. P. Pyrolysis-Gas Chromatography of Natural and Synthetic Melanins. J. Anal. Appl. Pyrolysis 1983, 5, 69–79.

  18. 18.

    Dzierżęga-Lęcznar, A.; Chodurek, E.; Stępień, K.; Wilczok, T. Pyrolysis-Gas Chromatography-Mass Spectrometry of Synthetic Neuromelanins. J. Anal. Appl. Pyrolysis 2002, 62, 239–248.

  19. 19.

    Dzierżęga-Lęcznar, A.; Stępień, K.; Chodurek, E.; Kurkiewicz, S.; Świątkowska, L.; Wilczok, T. Pyrolysis-Gas Chromatography/Mass Spectrometry of Peroxynitrite-treated Melanins. J. Anal. Appl. Pyrolysis 2003, 70, 457–467.

  20. 20.

    Smit, N. P. M.; van der Meulen, H.; Koerten, H. K.; Kolb, R. M.; Mommaas, A. M.; Lentjes, E. G. W. M.; Pavel, S. Melanogenesis in Cultured Melanocytes Can Be Substantially Influenced by L-Tyrosine and L-Cysteine. J. Invest. Dermatol. 1997, 109, 796–800.

  21. 21.

    Asperger, A.; Engewald, W.; Fabian, G. Thermally Assisted Hydrolysis and Methylation—A Simple and Rapid Online Derivatization Method for the Gas Chromatographic Analysis of Natural Waxes. J. Anal. Appl. Pyrolysis 2001, 61, 91–109.

  22. 22.

    del Río, J. C.; Hatcher, P. G. Analysis of Aliphatic Biopolymers Using Thermochemolysis with Tetramethylammonium Hydroxide (TMAH) and Gas Chromatography-Mass Spectrometry. Org. Geochem. 1998, 29, 1441–1451.

  23. 23.

    Pulchan, K. J.; Helleur, R.; Abrajano, T. A. TMAH Thermochemolysis Characterization of Marine Sedimentary Organic Matter in a Newfoundland Fjord. Org. Geochem. 2003, 34, 305–317.

  24. 24.

    Dworzański, J. P.; Berwald, L.; Meuzelaar, H. L. C. Pyrolytic Methylation-Gas Chromatography of Whole Bacterial Cells for Rapid Profiling of Cellular Fatty Acids. Appl. Environ. Microbiol. 1990, 56, 1717–1724.

  25. 25.

    Zang, X.; Brown, J. C.; van Heemst, J. D. H.; Palumbo, A.; Hatcher, P. G. Characterization of Amino Acids and Proteinaceous Materials Using Online Tetramethylammonium Hydroxide (TMAH) Thermochemolysis and Gas Chromatography-Mass Spectrometry Technique. J. Anal. Appl. Pyrolysis 2001, 61, 181–193.

Download references

Author information

Correspondence to Krystyna Stępień.

Additional information

Published online November 17, 2008

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stępień, K., Dzierżęga-Lęcznar, A., Kurkiewicz, S. et al. Melanin from epidermal human melanocytes: Study by pyrolytic GC/MS. J Am Soc Mass Spectrom 20, 464–468 (2009).

Download citation


  • Melanin Pigment
  • Lanin
  • Normal Human Epidermal Melanocyte
  • Melanin Sample
  • Hydroxide Pentah Ydrate