High-throughput quantitative analysis by desorption electrospray ionization mass spectrometry

  • Nicholas E. Manicke
  • Thomas Kistler
  • Demian R. Ifa
  • R. Graham CooksEmail author
  • Zheng OuyangEmail author
Application Note


A newly developed high-throughput desorption electrospray ionization (DESI) source was characterized in terms of its performance in quantitative analysis. A 96-sample array, containing pharmaceuticals in various matrices, was analyzed in a single run with a total analysis time of 3 min. These solution-phase samples were examined from a hydrophobic PTFE ink printed on glass. The quantitative accuracy, precision, and limit of detection (LOD) were characterized. Chemical background-free samples of propranolol (PRN) with PRN-d7 as internal standard (IS) and carbamazepine (CBZ) with CBZ-d10 as IS were examined. So were two other sample sets consisting of PRN/PRN-d7 at varying concentration in a biological milieu of 10% urine or porcine brain total lipid extract, total lipid concentration 250 ng/µL. The background-free samples, examined in a total analysis time of 1. 5 s/sample, showed good quantitative accuracy and precision, with a relative error (RE) and relative standard deviation (RSD) generally less than 3% and 5%, respectively. The samples in urine and the lipid extract required a longer analysis time (2. 5 s/sample) and showed RSD values of around 10% for the samples in urine and 4% for the lipid extract samples and RE values of less than 3% for both sets. The LOD for PRN and CBZ when analyzed without chemical background was 10 and 30 fmol, respectively. The LOD of PRN increased to 400 fmol analyzed in 10% urine, and 200 fmol when analyzed in the brain lipid extract.


Image Mass Spectrometry Peak Height Ratio Total Analysis Time Desorption Electrospray Ionization Biological Milieu 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hopfgartner, G.; Bourgogne, E. Quantitative High-Throughput Analysis of Drugs in Biological Matrices by Mass Spectrometry. Mass Spectrom. Rev. 2003, 22(3), 195–214.CrossRefGoogle Scholar
  2. 2.
    Dethy, J. M.; Ackermann, B. L.; Delatour, C.; Henion, J. D.; Schultz, G. A. Demonstration of Direct Bioanalysis of Drugs in Plasma Using Nanoelectrospray Infusion from a Silicon Chip Coupled with Tandem Mass Spectrometry. Anal. Chem. 2003, 75(4), 805–811.CrossRefGoogle Scholar
  3. 3.
    Kovarik, P.; Grivet, C.; Bourgogne, E.; Hopfgartner, G. Method Development Aspects for the Quantitation of Pharmaceutical Compounds in Human Plasma with a Matrix-Assisted Laser Desorption/Ionization Source in the Multiple Reaction Monitoring Mode. Rapid Commun. Mass Spectrom. 2007, 21, 911–919.CrossRefGoogle Scholar
  4. 4.
    Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science. 2004, 306(5695), 471–473.CrossRefGoogle Scholar
  5. 5.
    Cody, R. B.; Laramee, J. A.; Durst, H. D. Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 2005, 77(8), 2297–2302.CrossRefGoogle Scholar
  6. 6.
    Sampson, J. S.; Hawkridge, A. M.; Muddiman, D. C. Generation and Detection of Multiply-Charged Peptides and Proteins by Matrix-Assisted Laser Desorption Electrospray Ionization (MALDESI) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2006, 17(12), 1712–1716.CrossRefGoogle Scholar
  7. 7.
    Nemes, P.; Vertes, A. Laser Ablation Electrospray Ionization for Atmospheric Pressure, in Vivo, and Imaging Mass Spectrometry. Anal. Chem. 2007, 79(21), 8098–8106.CrossRefGoogle Scholar
  8. 8.
    Ratcliffe, L. V.; Rutten, F. J. M.; Barret, W. T.; Seymour, D.; Greenwood, C.; Aranda-Gonzalvo, Y.; Robinson, S.; McCoustra, M. Surface Analysis Underz Ambient Conditions Using Plasma-Assisted Desorption/Ionization Mass Spectrometry. Anal. Chem. 2007, 79, 6094–6101.CrossRefGoogle Scholar
  9. 9.
    McEwen, C. N.; McKay, R. G.; Larsen, B. S. Analysis of Solids, Liquids, and Biological Tissues Using Solids Probe Introduction at Atmospheric Pressure on Commercial LCS/Ms Instruments. Anal. Chem. 2005, 77(23), 7826–7831.CrossRefGoogle Scholar
  10. 10.
    Na, N.; Zhao, M.; Zhang, S.; Yang, C. Development of a Dielectric Barrier Discharge Ion Source for Ambient Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2007, 18, 1859–1862.CrossRefGoogle Scholar
  11. 11.
    Shiea, J.; Huang, M.-Z.; Hsu, H.-J.; Lee, C.-Y.; Yuan, C.-H.; Beech, I.; Sunner, J. Electrospray-Assisted Laser Desorption/Ionization Mass Spectrometry for Direct Ambient Analysis of Solids. Rapid Commun. Mass Spectrom. 2005, 19, 3701–3704.CrossRefGoogle Scholar
  12. 12.
    Mulligan, C. C.; MacMillan, D. K.; Noll, R. J.; Cooks, R. G. Fast Analysis of High-Energy Compounds and Agricultural Chemicals in Water with Desorption Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 3729–3736.CrossRefGoogle Scholar
  13. 13.
    Huang, G.; Chen, H.; Zhang, X.; Cooks, R. G.; Ouyang, Z. Rapid Screening of Anabolic Steroids in Urine by Reactive Desorption Electrospray Ionization. Anal. Chem. 2007, 79, 8327–8332.CrossRefGoogle Scholar
  14. 14.
    Williams, J. P.; Hilton, G. R.; Thalassinos, K.; Jackson, A. T.; Scrivens, J. H. The Rapid Characterization of Poly(Ethylene Glycol) Oligomers Using Desorption Electrospray Ionization Tandem Mass Spectrometry Combined with Novel Product Ion Peak Assignment Software. Rapid Commun. Mass Spectrom. 2007, 21(11), 1693–1704.CrossRefGoogle Scholar
  15. 15.
    Kauppila, T. J.; Talaty, N.; Kuuranne, T.; Kotiaho, T.; Kostiainen, R.; Cooks, R. G. Rapid Analysis of Metabolites and Drugs of Abuse from Urine Samples by Desorption Electrospray Ionization-Mass Spectrometry. Analyst. 2007, 132(9), 868–875.CrossRefGoogle Scholar
  16. 16.
    Chen, H.; Talaty, N.; Takats, Z.; Cooks, R. G. Desorption Electrospray Ionization Mass Spectrometry for High Throughput Analysis of Pharmaceutical Samples in the Ambient Environment. Anal. Chem. 2005, 77, 6915–6927.CrossRefGoogle Scholar
  17. 17.
    Pasilis, S. P.; Kertesz, V.; Van Berkel, G. J. Surface Scanning Analysis of Planar Arrays of Analytes with Desorption Electrospray Ionization-Mass Spectrometry. Anal. Chem. 2007, 79, 5956–5962.CrossRefGoogle Scholar
  18. 18.
    Ifa, D. R.; Manicke, N. E.; Rusine, A. L.; Cooks, R. G. Quantitative Analysis of Small Molecules by Desorption Electrospray Ionization Mass Spectrometry from Polytetrafluoroethylene Surfaces. Rapid Commun. Mass Spectrom. 2008, 22(4), 503–510.CrossRefGoogle Scholar
  19. 19.
    Ifa, D. R.; Wiseman, J. M.; Song, Q. Y.; Cooks, R. G. Development of Capabilities for Imaging Mass Spectrometry under Ambient Conditions with Desorption Electrospray Ionization (DESI). Int. J. Mass Spectrom. 2007, 259, 8–15.CrossRefGoogle Scholar
  20. 20.
    Manicke, N. E.; Wiseman, J. M.; Ifa, D. R.; Cooks, R. G. Desorption Electrospray Ionization (DESI) Mass Spectrometry and Tandem Mass Spectrometry (MS/MS) of Phospholipids and Sphingolipids: Ionization, Adduct Formation, and Fragmentation. J. Am. Soc. Mass Spectrom. 2008, 19(4), 531–543.CrossRefGoogle Scholar
  21. 21.
    Kertesz, V.; van Berkel, G. J. Scanning and Surface Alignment Considerations in Chemical Imaging with Desorption Electrospray Mass Spectrometry. Anal. Chem. 2008, 80, 1027–1032.CrossRefGoogle Scholar
  22. 22.
    Bereman, M. S.; Muddiman, D. C. Detection of Attomole Amounts of Analyte by Desorption Electrospray Ionization Mass Spectrometry (DESI-MS) Determined Using Fluorescence Spectroscopy. J. Am. Soc. Mass Spectrom. 2007, 18, 1093–1096.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  1. 1.Department of ChemistryPurdue University, Bindley Biosciences CenterWest LafayetteUSA

Personalised recommendations