How to deal with weak interactions in noncovalent complexes analyzed by electrospray mass spectrometry: Cyclopeptidic inhibitors of the nuclear receptor coactivator 1-STAT6

  • David Touboul
  • Ludovic Maillard
  • Anja Grässlin
  • Roba Moumne
  • Markus Seitz
  • John Robinson
  • Renato Zenobi


Mass spectrometry, and especially electrospray ionization, is now an efficient tool to study noncovalent interactions between proteins and inhibitors. It is used here to study the interaction of some weak inhibitors with the NCoA-1/STAT6 protein with KD values in the µM range. High signal intensities corresponding to some nonspecific electrostatic interactions between NCoA-1 and the oppositely charged inhibitors were observed by nanoelectrospray mass spectrometry, due to the use of high ligand concentrations. Diverse strategies have already been developed to deal with nonspecific interactions, such as controlled dissociation in the gas phase, mathematical modeling, or the use of a reference protein to monitor the appearance of nonspecific complexes. We demonstrate here that this last methodology, validated only in the case of neutral sugar-protein interactions, i.e., where dipole-dipole interactions are crucial, is not relevant in the case of strong electrostatic interactions. Thus, we developed a novel strategy based on half-maximal inhibitory concentration (IC50) measurements in a competitive assay with readout by nanoelectrospray mass spectrometry. IC50 values determined by MS were finally converted into dissociation constants that showed very good agreement with values determined in the liquid phase using a fluorescence polarization assay.

Supplementary material

13361_2011_200200303_MOESM1_ESM.doc (50 kb)
Supplementary material, approximately 51 KB.


  1. 1.
    Hensley, P. Defining the Structure and Stability of Macromolecular Assemblies in Solution: The Re-emergence of Analytical Ultracentrifugation as a Practical Tool. Structure 1996, 4, 367–373.CrossRefGoogle Scholar
  2. 2.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. E. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246, 64–71.CrossRefGoogle Scholar
  3. 3.
    Ganem, B.; Li, Y. T.; Henion, J. D. Observation of Noncovalent Enzyme-Substrate and Enzyme-Product Complexes by Ion-Spray Mass Spectrometry Observation of Noncovalent Enzyme-Substrate and Enzyme-Product Complexes by Ion-Spray Mass Spectrometry. J. Am. Chem. Soc. 1991, 113, 7818–7819.CrossRefGoogle Scholar
  4. 4.
    Loo, J. A. Studying Noncovalent Protein Complexes by Electrospray Ionization Mass Spectrometry. Mass Spectrom. Rev. 1997, 16, 1–23.CrossRefGoogle Scholar
  5. 5.
    Wang, W. J.; Kitova, E. N.; Klassen, J. S. Determination of Protein-Oligosaccharide Binding by Nanoelectrospray Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry. Methods Enzymol. 2003, 362, 376–397.CrossRefGoogle Scholar
  6. 6.
    Daniel, J. M.; McCombie, G.; Wendt, S.; Zenobi, R. Mass Spectrometric Determination of Association Constants of Adenylate Kinase with Two Noncovalent Inhibitors. J. Am. Soc. Mass Spectrom. 2003, 14, 442–448.CrossRefGoogle Scholar
  7. 7.
    Gabelica, V.; Galic, N.; Rosu, F.; Houssier, C.; de Pauw, E. Influence of Response Factors on Determining Equilibrium Association Constants of Noncovalent Complexes by Electrospray Ionization Mass Spectrometry. J. Mass Spectrom. 2003, 38, 491–501.CrossRefGoogle Scholar
  8. 8.
    Ashcroft, A. E. Recent Developments in Electrospray Ionization Mass Spectrometry: Noncovalently Bound Protein Complexes. Nat. Prod. Rep. 2005, 22, 452–464.CrossRefGoogle Scholar
  9. 9.
    Robinson, C. V.; Chung, E. W.; Kragelund, B. B.; Knudsen, J.; Aplin, R. T.; Poulsen, F. M.; Dobson, C. M. Probing the Nature of Noncovalent Interactions by Mass Spectrometry: A Study of Protein-CoA Ligand Binding and Assembly. J. Am. Chem. Soc. 1996, 118, 8646–8653.CrossRefGoogle Scholar
  10. 10.
    Peschke, M.; Verkerk, U. H.; Kebarle, P. Features of the ESI Mechanism that Affect the Observation of Multiply Charged Noncovalent Protein Complexes and the Determination of the Association Constant by the Titration Method. J. Am. Soc. Mass Spectrom. 2004, 15, 1424–1434.CrossRefGoogle Scholar
  11. 11.
    Wang, W.; Kitova, E. N.; Klassen, J. S. Nonspecific Protein-Carbohydrate Complexes Produced by Nanoelectrospray Ionization: Factors Influencing their Formation and Stability. Anal. Chem. 2005, 77, 3060–3071.CrossRefGoogle Scholar
  12. 12.
    Wang, W.; Kitova, E. N.; Sun, J.; Klassen, J. S. Blackbody Infrared Radiative Dissociation of Nonspecific Protein-Carbohydrate Complexes Produced by Nanoelectrospray Ionization: The Nature of the Noncovalent Interactions. J. Am. Soc. Mass Spectrom. 2005, 16, 1583–1594.CrossRefGoogle Scholar
  13. 13.
    Pinkse, M. W. H.; Heck, A. J. R.; Rumpel, K.; Pullen, F. Probing Noncovalent Protein-Ligand Interactions of the cGMP-Dependent Protein Kinase Using Electrospray Ionization Time of Flight Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 1392–1399.CrossRefGoogle Scholar
  14. 14.
    Sundquist, G.; Benkestock, K.; Roeraade, J. Investigation of Multiple Binding Sites on Ribonuclease A Using Nanoelectrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 1011–1016.CrossRefGoogle Scholar
  15. 15.
    Daubenfeld, T.; Bouin, A. P.; Van der Rest, G. A Deconvolution Method for the Separation of Specific Versus Nonspecific Interactions in Noncovalent Protein-Ligand Complexes Analyzed by ESI-FT-ICR Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2006, 17, 1239–1248.CrossRefGoogle Scholar
  16. 16.
    Sun, J.; Kitova, E. N.; Wamg, W.; Klassen, J. S. Method for Distinguishing Specific from Nonspecific Protein-Ligand Complexes in Nanoelectrospray Ionization Mass Spectrometry. Anal. Chem. 2006, 78, 3010–3018.CrossRefGoogle Scholar
  17. 17.
    Hebenstreit, D.; Wirnsberger, G.; Horejs-Hoeck, J.; Duschl, A. Signaling Mechanisms, Interaction Partners, and Target Genes of STAT6. Cytokine Growth Factor Rev. 2006, 17, 173–188.CrossRefGoogle Scholar
  18. 18.
    Bruns, H. A.; Kaplan, M. H. The Role of Constitutively Active Stat6 in Leukemia and Lymphoma. Crit. Rev. Oncol. Hematol. 2006, 57, 245–253.CrossRefGoogle Scholar
  19. 19.
    Litterst, C. M.; Pfitzner, E. Transcriptional Activation by STAT6 Requires the Direct Interaction with NCoA-1. J. Biol. Chem. 2001, 276, 45713–45721.CrossRefGoogle Scholar
  20. 20.
    Foster, P. S. STAT6: An Intracellular Target for the Inhibition of Allergic Disease. Clin. Exp. Allergy. 1999, 29, 12–16.CrossRefGoogle Scholar
  21. 21.
    Popescu, F. D. New Asthma Drugs Acting on Gene Expression. J. Cell. Mol. Med. 2003, 7, 475–486.CrossRefGoogle Scholar
  22. 22.
    Seitz, M.; Maillard, L.; Obrecht, D.; Robinson, J. A. Molecular Characterization of the NCoA-1-STAT6 Interaction. Chem. Biochem. 2008, 9, 1318–1322.Google Scholar
  23. 23.
    Nikolovska-Coleska, Z.; Wang, R.; Fang, X.; Pan, H.; Tomita, Y.; Li, P.; Roller, P. P.; Krajewski, K.; Saito, N. G.; Stuckey, J. A.; Wang, S. Development and Optimization of a Binding Assay for the XIAP BIR3 Domain Using Fluorescence Polarization. Anal. Biochem. 2004, 332, 261–273.CrossRefGoogle Scholar
  24. 24.
    Litterst, C. M.; Pfitzner, E. An LXXLL Motif in the Transactivation Domain of STAT6 Mediates Recruitment of NCoA-1/SRC-1. J. Biol. Chem. 2002, 277, 36052–36060.CrossRefGoogle Scholar
  25. 25.
    Razeto, A.; Ramakrishnan, V.; Litterst, C. M.; Giller, K.; Griesinger, C.; Carlomagno, T.; Lakomek, N.; Heimburg, T.; Lodrini, M.; Pfitzner, E.; Becker, S. Structure of the NCoA-1/SRC-1 PAS-B Domain Bound to the LXXLL Motif of the STAT6 Transactivation Domain. J. Mol. Biol. 2004, 336, 319–329.CrossRefGoogle Scholar
  26. 26.
    Daniel, J. M.; Friess, S. D.; Rajagopalan, S.; Wendt, S.; Zenobi, R. Quantitative Determination of Noncovalent Binding Interactions Using Soft Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2002, 216, 1–27.CrossRefGoogle Scholar
  27. 27.
    Mathur, S.; Badertscher, M.; Scott, M.; Zenobi, R. Critical Evaluation of Mass Spectrometric Measurement of Dissociation Constants: Accuracy and Cross-Validation Against Surface Plasmon Resonance and Circular Dichroism for the Calmodulin-Melittin system. Phys. Chem., Chem. Phys. 2007, 9, 6187–6198.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • David Touboul
    • 1
  • Ludovic Maillard
    • 2
  • Anja Grässlin
    • 2
  • Roba Moumne
    • 2
  • Markus Seitz
    • 2
  • John Robinson
    • 2
  • Renato Zenobi
    • 1
  1. 1.Department of Chemistry and Applied BiosciencesETH Zürich, ETH HonggerbergZürichSwitzerland
  2. 2.Institute of Organic ChemistryUniversity of ZürichZürichSwitzerland

Personalised recommendations