Advertisement

Why are a 3 ions rarely observed?

  • Julia M. Allen
  • Alawee H. Racine
  • Ashley M. Berman
  • Jeffrey S. Johnson
  • Benjamin J. Bythell
  • Béla PaizsEmail author
  • Gary L. GlishEmail author
Focus: Peptide Fragmentation

Abstract

It has been determined experimentally that a 3 ions are generally not observed in the tandem mass spectroscopic (MS/MS) spectra of b 3 ions. This is in contrast to other b n ions, which often have the corresponding a n ion as the base peak in their MS/MS spectra. Although this might suggest a different structure for b 3 ions compared to that of other b n ions, theoretical calculations indicate the conventional oxazolone structure to be the lowest energy structure for the b 3 ion of AAAAR, as it is for other b n ions of this peptide. However, it has been determined theoretically that the a3 ion is lower in energy than other a n ions, relative to the corresponding b ions. Furthermore, the a 3b 2 transition structure (TS) is lower in energy than other a n b n−1 TSs of AAAAR, compared with the corresponding b ions. Consequently, it is suggested that the b 3 ion does fragment to the a 3 ion, but that the a 3 ion then immediately fragments (to b 2 and a*3) because of the excess internal energy arising from its relatively low energy and the facile a 3b 2 reaction. That is why a 3 ions are not observed in the MS/MS spectra of b 3 ions.

Keywords

Electron Capture Dissociation Oxazolone Protonated Peptide Oxazolone Structure Oxazolone Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Biemann, K. Contributions of Mass Spectrometry to Peptide and Protein Structure. Biomed. Environ. Mass Spectrom. 1988, 16, 99–111.CrossRefGoogle Scholar
  2. 2.
    Paizs, B.; Suhai, S. Fragmentation Pathways of Protonated Peptides. Mass Spectrom. Rev. 2004, 24, 508–548.CrossRefGoogle Scholar
  3. 3.
    Zubarev, R. A. Reactions of Polypeptide Ions with Electrons in the Gas Phase. Mass Spectrom. Rev. 2003, 22, 57–77.CrossRefGoogle Scholar
  4. 4.
    Zubarev, R. A.; Zubarev, A. R.; Savitski, M. M. Electron Capture/Transfer versus Collisionally Activated/Induced Dissociations: Solo or Duet?. J. Am. Soc. Mass Spectrom. 2008, 19, 753–761.CrossRefGoogle Scholar
  5. 5.
    Hunt, D. F.; Yates, J. R., 3rd; Shabanonowitz, J.; Winston, S.; Hauer, C. R. Protein Sequencing by Tandem Mass Spectrometry. Proc. Natl. Acad. Sci. U. S. A. 1986, 83, 6233–6237.CrossRefGoogle Scholar
  6. 6.
    Johnson, R. S.; Martin, S. A.; Biemann, K.; Stults, J. T.; Watson, J. T. Novel Fragmentation Process of Peptides by Collision-Induced Decomposition in a Tandem Mass Spectrometer: Differentiation of Leucine and Isoleucine. Anal. Chem. 1987, 59, 2621–2625.CrossRefGoogle Scholar
  7. 7.
    Thorne, G. C.; Gaskell, S. J. Elucidation of Some Fragmentations of Small Peptides Using Sequential Mass Spectrometry on a Hybrid Instrument. Rapid Commun. Mass Spectrom. 1989, 3, 217–221.CrossRefGoogle Scholar
  8. 8.
    McCormack, A. L.; Somogyi, A.; Dongré, A. R.; Wysocki, V. H. Fragmentation of Protonated Peptides: Surface-Induced Dissociation in Conjunction with a Quantum Mechanical Approach. Anal. Chem. 1993, 65, 2859–2872.CrossRefGoogle Scholar
  9. 9.
    Dongré, A. R.; Somogyi, Á.; Wysocki, V. H. Surface-Induced Dissociation: An Effective Tool to Probe Structure, Energetics and Fragmentation Mechanisms of Protonated Peptides. J. Mass Spectrom. 1996, 31, 339–350.CrossRefGoogle Scholar
  10. 10.
    Vaisar, T.; Urban, J. Probing the Proline Effect in CID of Protonated Peptides. J. Mass Spectrom. 1996, 31, 1185–1187.CrossRefGoogle Scholar
  11. 11.
    Dongré, A. R.; Jones, J. L.; Somogyi, Á.; Wysocki, V. H. Influence of Peptide Composition, Gas-Phase Basicity, and Chemical Modification on Fragmentation Efficiency: Evidence for the Mobile Proton Model. J. Am. Chem. Soc. 1996, 118, 8365–8374.CrossRefGoogle Scholar
  12. 12.
    Polce, M. J.; Ren, D.; Wesdemiotis, C. Dissociation of the Peptide Bond in Protonated Peptides. J. Mass Spectrom. 2000, 35, 1391–1398.CrossRefGoogle Scholar
  13. 13.
    Paizs, B.; Suhai, S. Towards Understanding the Tandem Mass Spectra of Protonated Oligopeptides: 1: Mechanism of Amide Bond Cleavage. J. Am. Soc. Mass Spectrom. 2004, 15, 103–113.CrossRefGoogle Scholar
  14. 14.
    Paizs, B.; Lendvay, G.; Vékey, K.; Suhai, S. Formation of b2+ Ions from Protonated Peptides: An Ab Initio Study. Rapid Commun. Mass Spectrom. 1999, 13, 525–533.CrossRefGoogle Scholar
  15. 15.
    Paizs, B.; Suhai, S.; Harrison, A. G. Experimental and Theoretical Investigation of the Main Fragmentation Pathways of Protonated H-Gly-Gly-Sar-Oh and H-Gly-Sar-Sar-Oh. J. Am. Soc. Mass Spectrom. 2003, 14, 1454–1469.CrossRefGoogle Scholar
  16. 16.
    Laskin, J.; Bailey, T. H.; Futrell, J. H. Mechanisms of Peptide Fragmentation from Time- and Energy-Resolved Surface-Induced Dissociation Studies: Dissociation of Angiotensin Analogs. Int. J. Mass Spectrom. 2006, 249, 462–472.CrossRefGoogle Scholar
  17. 17.
    Farrugia, J. M.; O’Hair, R. A. J.; Reid, G. E. Do All b2 Ions Have Oxazolone Structures?: Multistage Mass Spectrometry and Ab Initio Studies on Protonated N-Acyl Amino Acid Methyl Ester Model Systems. Int. J. Mass Spectrom. 2001, 210–211, 71–87.Google Scholar
  18. 18.
    Zubarev, R. A.; Haselmann, K. F.; Budnik, B.; Kjeldsen, F.; Jensen, F. Towards an Understanding of the Mechanism of Electron-Capture Dissociation: A Historical Perspective and Modern Ideas. Eur. J. Mass Spectrom. 2002, 8, 337–349.CrossRefGoogle Scholar
  19. 19.
    Syrstad, E. A.; Turecek, F. Toward a General Mechanism of Electron Capture Dissociation. J. Am. Soc. Mass Spectrom. 2005, 16, 208–224.CrossRefGoogle Scholar
  20. 20.
    Holm, A. I. S.; Hvelplund, P.; Kadhane, U.; Larsen, M. K.; Liu, B.; Nielsen, S. B.; Panja, S.; Pedersen, J. M.; Skrydstrup, T.; Stochkel, K.; Williams, E. R.; Worm, E. S. On the Mechanism of Electron-Capture-Induced Dissociation of Peptide Dications from 15n-Labeling and Crown-Ether Complexation. J. Phys. Chem. A. 2007, 111, 9641–9643.CrossRefGoogle Scholar
  21. 21.
    Savitski, M. M.; Kjeldsen, F.; Nielsen, M. L.; Zubarev, R. A. Hydrogen Rearrangement to and from Radical Z Fragments in Electron Capture Dissociation of Peptides. J. Am. Soc. Mass Spectrom. 2007, 18, 113–120.CrossRefGoogle Scholar
  22. 22.
    Rand, K. D.; Adams, C. M.; Zubarev, R. A.; Jorgensen, T. J. D. Electron Capture Dissociation Proceeds with a Low Degree of Intramolecular Migration of Peptide Amide Hydrogens. J. Am. Chem. Soc. 2008, 130, 1341–1349.CrossRefGoogle Scholar
  23. 23.
    Vachet, R. W.; Bishop, B. M.; Erickson, B. W.; Glish, G. L. Novel Peptide Dissociation: Gas-Phase Intramolecular Rearrangement of Internal Amino Acid Residues. J. Am. Chem. Soc. 1997, 119, 5481–5488.CrossRefGoogle Scholar
  24. 24.
    Payne, A. H.; Glish, G. L. Thermally Assisted Infrared Multiphoton Photodissociation in a Quadrupole Ion Trap. Anal. Chem. 2001, 73, 3542–3548.CrossRefGoogle Scholar
  25. 25.
    Yague, J.; Paradela, A.; Ramos, M.; Ogueta, S.; Marina, A.; Barahona, F.; de Castro, J. A. L.; Vazquez, J. Peptide Rearrangement During Quadrupole Ion Trap Fragmentation: Added Complexity to MS/MS Spectra. Anal. Chem. 2003, 75, 1524–1535.CrossRefGoogle Scholar
  26. 26.
    Bythell, B. J.; Barofsky, D. F.; Pingitore, F.; Wang, P.; Wesdemiotis, C.; Paizs, B. Backbone Cleavages and Sequential Loss of Carbon Monoxide and Ammonia from Protonated AGG: A Combined Tandem Mass Spectrometry, Isotope Labeling, and Theoretical Study. J. Am. Soc. Mass Spectrom. 2007, 18, 1291–1303.CrossRefGoogle Scholar
  27. 27.
    Olsen, J. V.; Mann, M. Improved Peptide Identification in Proteomics by Two Consecutive Stages of Mass Spectrometric Fragmentation. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 13417–13422.CrossRefGoogle Scholar
  28. 28.
    Cooper, T.; Talaty, E.; Grove, J.; Suhai, S.; Paizs, B.; Van Stipdonk, M. Isotope Labeling and Theoretical Study of the Formation of a3* Ions from Protonated Tetraglycine. J. Am. Soc. Mass Spectrom. 2006, 17, 1654–1664.CrossRefGoogle Scholar
  29. 29.
    Alexander, A. J.; Thibault, P.; Boyd, R. K. Collision-Induced Dissociations of Peptide Ions: 2. Remote Charge-Site Fragmentations in a Tandem, Hybrid Mass Spectrometer. Rapid Commun. Mass Spectrom. 1989, 3, 30–34.CrossRefGoogle Scholar
  30. 30.
    Thorne, G. C.; Ballard, K. D.; Gaskell, S. J. Metastable Decomposition of Peptide [M+H]+ Ions via Rearrangement Involving Loss of the C-Terminal Amino Acid Residue. J. Am. Soc. Mass Spectrom. 1990, 1, 249–257.CrossRefGoogle Scholar
  31. 31.
    Rakov, V. S.; Borisov, O. V.; Whitehouse, C. M. Establishing Low-Energy Sequential Decomposition Pathways of Leucine Enkephalin and Its N- and C-Terminus Fragments Using Multiple-Resonance Cid in Quadrupolar Ion Guide. J. Am. Soc. Mass Spectrom. 2004, 15, 1794–1809.CrossRefGoogle Scholar
  32. 32.
    Harrison, A. G.; Young, A. B.; Bleiholder, C.; Suhai, S.; Paizs, B. Scrambling of Sequence Information in Collision-Induced Dissociation of Peptides. J. Am. Chem. Soc. 2006, 128, 10364–10365.CrossRefGoogle Scholar
  33. 33.
    Vachet, R. W.; Winders, A. D.; Glish, G. L. Correlation of Kinetic Energy Losses in High-Energy Collision-Induced Dissociation with Observed Peptide Product Ions. Anal. Chem. 1996, 68, 522–526.CrossRefGoogle Scholar
  34. 34.
    Chu, I. K.; Shoeib, T.; Guo, X.; Rodriquez, C. F.; Lau, T.-C.; Hopkinson, A. C.; Siu, K. W. M. Characterization of the Product Ions from the Collision-Induced Dissociation of Argentinated Peptides. J. Am. Soc. Mass Spectrom. 2001, 12, 163–175.CrossRefGoogle Scholar
  35. 35.
    Johnson, R. S.; Martin, S. A.; Biemann, K. Collision-Induced Fragmentation of (M+H)+ Ions of Peptides: Side Chain Specific Sequence Ions. Int. J. Mass Spectrom. Ion Processes. 1988, 86, 137–154.CrossRefGoogle Scholar
  36. 36.
    Yalcin, T.; Csizmadia, I. G.; Peterson, M. R.; Harrison, A. G. The Structure and Fragmentation of b n (n≥3) Ions in Peptide Spectra. J. Am. Soc. Mass Spectrom. 1996, 7, 233–242.CrossRefGoogle Scholar
  37. 37.
    Harrison, A. G.; Csizmadia, I. G.; Tang, T.-H. Structure and Fragmentation of b2 Ions in Peptide Mass Spectra. J. Am. Soc. Mass Spectrom. 2000, 11, 427–436.CrossRefGoogle Scholar
  38. 38.
    Polfer, N. C.; Oomens, J.; Suhai, S.; Paizs, B. Spectroscopic and Theoretical Evidence for Oxazolone Ring Formation in Collision Induced Dissociation of Peptides. J. Am. Chem. Soc. 2005, 127, 17154–17155.CrossRefGoogle Scholar
  39. 39.
    Chen, X.; Turecek, F. Simple b-Ions Have Cyclic Structures: A Neutralization-Reionization Mass Spectrometric and Computational Study. J. Am. Soc. Mass Spectrom. 2005, 16, 1941–1956.CrossRefGoogle Scholar
  40. 40.
    Polfer, N. C.; Oomens, J.; Suhai, S.; Paizs, B. Infrared Spectroscopy and Theoretical Studies on Gas-Phase Protonated Leu-enkephalin and Its Fragments: Direct Experimental Evidence for the Mobile Proton. J. Am. Chem. Soc. 2007, 129, 5887–5897.CrossRefGoogle Scholar
  41. 41.
    Paizs, B.; Szlavik, Z.; Lendvay, G.; Vékey, K.; Suhai, S. Formation of a2+ ions of protonated peptides: An Ab Initio Study. Rapid Commun. Mass Spectrom. 2000, 14, 746–755.CrossRefGoogle Scholar
  42. 42.
    Fang, D. C.; Yalcin, T.; Tang, T. H.; Fu, X. Y.; Harrison, A. G.; Csizmadia, I. G. Electron Distribution in Cationic Fragments Generated Mass Spectrometrically from Peptides. J. Mol. Struct. (Theochem.). 1999, 468, 135–149.CrossRefGoogle Scholar
  43. 43.
    Vachet, R. W.; Ray, K. L.; Glish, G. L. Origin of Product Ions in the MS/MS Spectra of Peptides in a Quadrupole Ion Trap. J. Am. Soc. Mass Spectrom. 1998, 9, 341–344.CrossRefGoogle Scholar
  44. 44.
    Ambihapathy, K.; Yalcin, T.; Leung, H. W.; Harrison, A. G. Pathways to Immonium Ions in the Fragmentation of Protonated Peptides. J. Mass Spectrom. 1997, 32, 209–215.CrossRefGoogle Scholar
  45. 45.
    Harrison, A. G.; Young, A. B.; Schnölzer, M.; Paizs, B. Formation of Iminium Ions by Fragmentation of a2 Ions. Rapid Commun. Mass Spectrom. 2004, 18, 1635–1640.CrossRefGoogle Scholar
  46. 46.
    Vandenburg, G. E.; Harrison, J. B.; Carter, H. E.; Magerlein, B. J. Synthesis of 2-Phenyl-5-oxazolone. Org. Synth. 2002, 5, 101.Google Scholar
  47. 47.
    Lee, V. W.; Li, H.; Lau, T.; Siu, K. W. M. Structures of b and a Product Ions from the Fragmentation of Argentinated Peptides. J. Am. Chem. Soc. 1998, 120, 7302–7309.CrossRefGoogle Scholar
  48. 48.
    Case, D. A.; Pearlman, D. A.; Caldwell, J. W.; Cheatham, T. E., III; Ross, W. S.; Simmerling, C. L.; Darden, T. A.; Merz, K. M.; Stanton, R. V.; Cheng, A. L.; Vincent, J. J.; Crowley, M.; Tsui, V.; Radmer, R. J.; Duan, Y.; Pitera, J.; Massova, I. G.; Seibel, G. L.; Singh, U. C.; Weiner, P. K.; Kollmann, P. A. In AMBER 99, University of California: San Francisco, 1999.Google Scholar
  49. 49.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C. 02, Gaussian, Inc.: Wallingford, CT, 2004.Google Scholar
  50. 50.
    Paizs, B.; Suhai, S. Combined Quantum Chemical and RRKM Modeling of the Main Fragmentation Pathways of Protonated GGG: I. Cis-trans Isomerization around Protonated Amide Bonds. Rapid Commun. Mass Spectrom. 2002, 15, 2307–2323.CrossRefGoogle Scholar
  51. 51.
    Asam, M. R.; Glish, G. L. Determination of the Dissociation Kinetics of a Transient Intermediate. J. Am. Soc. Mass Spectrom. 1999, 10, 119–125.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Julia M. Allen
    • 1
  • Alawee H. Racine
    • 1
  • Ashley M. Berman
    • 1
  • Jeffrey S. Johnson
    • 1
  • Benjamin J. Bythell
    • 1
  • Béla Paizs
    • 2
    Email author
  • Gary L. Glish
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of North Carolina-Chapel HillChapel Hill
  2. 2.Department of Molecular PhysicsGerman Cancer Research InstituteHeidelbergGermany

Personalised recommendations