Rapid discrimination of archaeal tetraether lipid cores by liquid chromatography-tandem mass spectrometry

  • Christopher S. Knappy
  • James P. J. Chong
  • Brendan J. Keely


Atmospheric pressure chemical ionization liquid chromatography-tandem mass spectrometry (APCI LC-MS/MS) of tetraether lipid cores of archaeal origin reveals distinct dissociation pathways for three classes of core lipid extracted from Methanobacter thermautotrophicus. Within these classes, two isobaric tetraether lipids, one a scarcely reported lipid constituent of M. thermautotrophicus and the other an artefact formed during extraction from cultured cells, were identified and distinguished via their MS2 spectra. APCI LC-MS/MS discriminates different tetraether core lipid types and isobaric species and reveals the mass of the constituent biphytanyl chains within the tetraether cores, albeit without full elucidation of their structures. Furthermore, the method allows direct estimation of the relative proportions of tetraether core lipids from chromatographic peak area measurement, allowing rapid profiling of these compounds in microbiological and environmental extracts.


  1. 1.
    Fox, G. E.; Stackebrandt, E.; Hespell, R. B.; Gibson, J.; Maniloff, J.; Dyer, T. A.; Wolfe, R. S.; Balch, W. E.; Tanner, R. S.; Magrum, L. J.; Zablen, L. B.; Blakemore, R.; Gupta, R.; Bonen, L.; Lewis, B. J.; Stahl, D. A.; Luehrsen, K. R.; Chen, K. N.; Woese, C. R. The Phylogeny of Prokaryotes. Science. 1980, 209, 457–463.CrossRefGoogle Scholar
  2. 2.
    Huber, H.; Hohn, M. J.; Rachel, R.; Fuchs, T.; Wimmer, V. C.; Stetter, K. O. A New Phylum of Archaea Represented by a Nanosized Hyperthermophilic Symbiont. Nature. 2002, 417(6884), 63–67.CrossRefGoogle Scholar
  3. 3.
    Karner, M. B.; DeLong, E. F.; Karl, D. M. Archaeal Dominance in the Mesopelagic Zone of the Pacific Ocean. Nature 2001, 409, 507–510.CrossRefGoogle Scholar
  4. 4.
    De Rosa, M.; Gambacorta, A. The Lipids of Archaebacteria. Prog. Lipid Res. 1988, 27, 153–175.CrossRefGoogle Scholar
  5. 5.
    Koga, Y.; Morii, H. Biosynthesis of Ether-Type Polar Lipids in Archaea and Evolutionary Considerations. Microbiol. Mol. Biol. Rev. 2007, 71(1), 97–120.CrossRefGoogle Scholar
  6. 6.
    Kates, M. Ether Lipids in Extremely Halophilic Bacteria. In Ether Lipids: Chemistry and Biology, Snyder, F., Ed.; Academic Press: New York, 1972; p. 351.CrossRefGoogle Scholar
  7. 7.
    Gräther, O.; Arigoni, D. Detection of Regioisomeric Macrocyclic Tetraethers in the Lipids of Methanobacterium thermoautotrophicum and other archaeal organisms. J. Chem. Soc. Chem. Commun. 1995, 405–406.Google Scholar
  8. 8.
    Koga, Y.; Nishihara, M.; Morii, H.; Akagawa-Matsushita, M. Ether Polar Lipids of Methanogenic Bacteria—Structures, Comparative Aspects, and Biosyntheses. Microbiol. Rev. 1993, 57(1), 164–182.Google Scholar
  9. 9.
    Sinninghe Damsté, J. S.; Schouten, S.; Hopmans, E. C.; van Duin, A. C. T.; Geenevasen, J. A. J. Crenarchaeol: The Characteristic Core Dibiphytanyl Glycerol Tetraether Membrane Lipid of Cosmopolitan Pelagic Crenarchaeota. J. Lipid Res. 2002, 43, 1641–1651.CrossRefGoogle Scholar
  10. 10.
    Hopmans, E. C.; Schouten, S.; Pancost, R. D.; van der Meer, M. T. J.; Sinninghe Damsté, J. S. Analysis of Intact Tetraether Lipids in Archaeal Cell Material and Sediments by High Performance Liquid Chromatography/Atmospheric Pressure Chemical Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 585–589.CrossRefGoogle Scholar
  11. 11.
    de la Torre, J. R.; Walker, C. B.; Ingalls, A. E.; Könneke, M.; Stahl, D. A. Cultivation of a Thermophilic Ammonia Oxidizing Archaeon Synthesizing Crenarchaeol. Environ. Microbiol. 2008, 10(1), 810–818.CrossRefGoogle Scholar
  12. 12.
    Sugai, A.; Uda, I.; Itoh, Y. H.; Itoh, T. The Core Lipid Composition of the 17 Strains of Hyperthermophilic Archaea. Thermococcales. J. Oleo Sci. 2004, 53(1), 41–44.CrossRefGoogle Scholar
  13. 13.
    Morii, H.; Eguchi, T.; Nishihara, M.; Kakinuma, K.; Konig, H.; Koga, Y. A Novel Ether Core Lipid with H-Shaped C80-Isoprenoid Hydrocarbon Chain from Hyperthermophilic Methanogen. Methanothermus fervidus. Biochim. Biophys. Acta. 1998, 1390, 339–345.CrossRefGoogle Scholar
  14. 14.
    Lutnaes, B. F.; Krane, J.; Smith, B. E.; Rowland, S. J. Structure Elucidation of C80, C81, and C82 Isoprenoid Tetra-Acids Responsible for Naphthenate Deposition in Crude Oil Production. Org. Biomol. Chem. 2007, 5(12), 1873–1877.CrossRefGoogle Scholar
  15. 15.
    Schouten, S.; Baas, M.; Hopmans, E. C.; Reysenbach, A. L.; Damsté, J. S. S. Tetraether Membrane Lipids of Candidatus Aciduliprofundum boonei, a Cultivated Obligate Thermoacidophilic Euryarchaeote from Deep-Sea Hydrothermal Vents. Extremophiles 2008, 12(1), 119–124.CrossRefGoogle Scholar
  16. 16.
    Lutnaes, B. F.; Brandal, Ø.; Sjöbolm, J.; Krane, J. Archaeal C80 Isoprenoid Tetra-Acids Responsible for Naphthenate Deposition in Crude Oil Processing. Org. Biomol. Chem. 2006, 4, 616–620.CrossRefGoogle Scholar
  17. 17.
    Nishihara, M.; Morii, H.; Koga, Y. Structure Determination of a Quartet of Novel Tetraether Lipids from Methanobacterium thermoautotrophicum. J. Biochem. 1987, 101, 1007–1015.Google Scholar
  18. 18.
    Koga, Y.; Morii, H. Special Methods for the Analysis of Ether Lipid Structure and Metabolism in Archaea. Anal. Biochem. 2006, 348, 1–14.CrossRefGoogle Scholar
  19. 19.
    Schouten, S.; Huguet, C.; Hopmans, E. C.; Kienhuis, M. V. M.; Sinninghe Damsté, J. S. Analytical Methodology for TEX86 Paleothermometry by High-Performance Liquid Chromatography/Atmospheric Pressure Chemical Ionization-Mass Spectrometry. Anal. Chem. 2007, 79, 2940–2944.CrossRefGoogle Scholar
  20. 20.
    Powers, L. A.; Werne, J. P.; Johnson, T. C.; Hopmans, E. C.; Damsté, J. S. S.; Schouten, S. Crenarchaeotal Membrane Lipids in Lake Sediments: A New Paleotemperature Proxy for Continental Paleoclimate Reconstruction?. Geology. 2004, 32, 613–616.CrossRefGoogle Scholar
  21. 21.
    Pearson, A.; Huang, Z.; Ingalls, A. E.; Romanek, C. S.; Wiegel, J.; Freeman, K. H.; Smittenberg, R. H.; Zhang, C. L. Nonmarine Crenarchaeol in Nevada Hot Springs. App. Environ. Microbiol. 2004, 70(9), 5229–5237.CrossRefGoogle Scholar
  22. 22.
    Escala, M.; Rosell-Melé, A.; Masque, P. Rapid Screening of Glycerol Dialkyl Glycerol Tetraethers in Continental Eurasia Samples Using HPLC/APCI-Ion Trap Mass Spectrometry. Org. Geochem. 2007, 38, 161–164.CrossRefGoogle Scholar
  23. 23.
    Wasserfallen, A.; Nölling, J.; Pfister, P.; Reeve, J.; Conway de Macario, E. Phylogenetic Analysis of 18 Thermophilic Methanobacterium Isolates Supports the Proposals to Create a New Genus, Methanobacter gen. nov., and to Reclassify Several Isolates in Three Species, Methanothermobacter thermautotrophicus comb. nov., Methanobacter wolfeii comb. nov., and. Methanobacter marburgensis sp. nov. Int. J. Syst. Evol. Microbiol. 2000, 50, 43–53.CrossRefGoogle Scholar
  24. 24.
    Galliker, P.; Gräther, O.; Rümmler, M.; Fitz, W.; Arigoni, D. New Structural and Biosynthetic Aspects of the Unusual Core Lipids from Archaebacteria. In Vitamin B12 and B12-proteins, Krautler, B., Arigoni, D., Golding, B. T., Eds.; Wiley-VCH: Hoboken, 1998, p. 447–458.CrossRefGoogle Scholar
  25. 25.
    Wilson, M. A.; Ph.D. Thesis, University of York, UK, 2004.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • Christopher S. Knappy
    • 1
  • James P. J. Chong
    • 2
  • Brendan J. Keely
    • 1
  1. 1.Department of ChemistryUniversity of YorkHeslingtonUK
  2. 2.Department of BiologyUniversity of YorkYorkUnited Kingdom

Personalised recommendations