Detection of honeybee venom in envenomed tissues by direct MALDI MSI

  • Simona Francese
  • Duccio Lambardi
  • Guido Mastrobuoni
  • Giancarlo la Marca
  • Gloriano Moneti
  • Stefano Turillazzi


A new analytical approach using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) for the study of honeybee venom is shown. In vitro and in vivo models simulating the bee sting have been developed using live honeybees and, as the envenomation sites, pig ears and rat legs; MALDI MSI has been used to map, over time, the diffusion and distribution of three venom allergens (Api m 1, Api m 4, and Api m 6) and two venom toxins (apamine and mast cell degranulating peptide). In conjunction with other classical biochemical techniques and high resolution mass spectrometry (HRMS), structural data have been obtained that contribute to current understanding of honeybee venom composition. Initial data have also been obtained demonstrating the feasibility of mapping the organism’s response to the sting. The opportunity to monitor venom diffusion and the organism’s response at the same time might open new pathways for in vivo preclinical studies in designing and testing new venom immunotherapy (VIT).

Supplementary material

13361_2011_200100112_MOESM1_ESM.tiff (24 kb)
Supplementary material, approximately 25 KB.
13361_2011_200100112_MOESM2_ESM.tiff (26 kb)
Supplementary material, approximately 27 KB.
13361_2011_200100112_MOESM3_ESM.tiff (245 kb)
Supplementary material, approximately 251 KB.
13361_2011_200100112_MOESM4_ESM.tiff (28 kb)
Supplementary material, approximately 29 KB.
13361_2011_200100112_MOESM5_ESM.doc (24 kb)
Supplementary material, approximately 25 KB.
13361_2011_200100112_MOESM6_ESM.tiff (123 kb)
Supplementary material, approximately 126 KB.


  1. 1.
    Banks, B. E. C.; Shipolini, R. A. Chemistry and Pharmacology of Honeybee Venom. In Venoms of the Hymenoptera, Piek, T., Ed.; Academic Press: London, 1986; p. 329–416.CrossRefGoogle Scholar
  2. 2.
    Habermann, E. Chemistry, Pharmacology, and Toxicology of Bee, Wasp, and Hornet Venoms. In Venomous Animals and Their Venoms, Bucherl, W., Buckley, E. E., Eds.; Academic Press: New York, 1971; p. 61–93.CrossRefGoogle Scholar
  3. 3.
    Vetter, R. S.; Visscher, P. K.; Camazine, S. Mass Envenomations by Honey Bees and Wasps. West. J. Med. 1999, 170, 223–227.Google Scholar
  4. 4.
    Schumacher, M. J.; Tveten, M. S.; Egen, N. B. Rate and Quantity of Delivery of Venom from Honeybee Stings. J. Allergy Clin. Immunol. 1994, 93, 831–835.CrossRefGoogle Scholar
  5. 5.
    Kreil, G. Biosynthesis of Melittin, a Toxic Peptide from Bee Venom. Eur. J. Biochem. 1973, 33, 558–566.CrossRefGoogle Scholar
  6. 6.
    Kreil, G. Hyaluronidases: A group of neglected enzymes. Prot. Sci. 1995, 4, 1666–1669.CrossRefGoogle Scholar
  7. 7.
    Hoffman, D. R. Hymenoptera Venom Proteins. Nat. Toxins. 1996, 2, 169–186.Google Scholar
  8. 8.
    Grunwald, T.; Bockisch, B.; Spillner, E.; Ring, J.; Bredehorst, R.; Ollert, M. W. Molecular Cloning and Expression in Insect Cells of Honeybee Venom Allergen Acid Phosphatase (Api m 3). J. Allergy Clin. Immunol. 2006, 117, 848–854.CrossRefGoogle Scholar
  9. 9.
    Peiren, N.; Vanrobaeys, F.; de Graaf, D. C.; Devreese, B.; Van Beeumen, J.; Jacobs, F. J. The protein composition of honeybee venom reconsidered by a proteomic approach. Biochim. Biophys. Acta. 2005, 1752, 1–5.CrossRefGoogle Scholar
  10. 10.
    Peiren, N.; de Graaf, D. C.; Brunain, M.; Bridts, C. H.; Ebo, D. G.; Stevens, W. J.; Jacobs, F. J. Molecular Cloning and Expression of Icarapin, a Novel IgE-Binding Bee Venom Protein. FEBS Lett. 2006, 580, 4895–4899.CrossRefGoogle Scholar
  11. 11.
    Mustafa, F. B.; Ng, F. S. P.; Nguyen, T. H.; Lim, L. H. K. Honeybee Venom Secretory Phospholipase A2 Induces Leukotriene Production But Not Histamine Release from Human Basophils. Clin. Exp. Immunol. 2007, 151, 94–100.CrossRefGoogle Scholar
  12. 12.
    de Lima, P. R.; Brochetto-Braga, M. R. Hymenoptera Venom Review Focusing on Apis mellifera. J. Venom Anim. Toxins Trop. Dis. 2003, 9, 149–162.Google Scholar
  13. 13.
    David, B. Current Knowledge on Molecular Structure of Allergens. Rev. Fr. Allergol. 1999, [Numero special], 2–5.Google Scholar
  14. 14.
    de Weck, A. L.; Sanza, M. L. Cellular Allergen Stimulation Test (CAST), a Review. J. Invest. Allergol. Clin. Immunolol. 2004, 14, 253–273.Google Scholar
  15. 15.
    Shipolini, R. A.; Callewaert, G. L.; Cottrell, R. C.; Vernon, C. A. The Amino-Acid Sequence and Carbohydrate Content of Phospholipase A2 from Bee Venom. Eur. J. Biochem. 1974, 48, 465–476.CrossRefGoogle Scholar
  16. 16.
    Kuchler, K.; Gmachl, M.; Sippl, M. J.; Kreil, G. Analysis of the cDNA for Phospholipase A2 from Honeybee Venom Glands. The Deduced Amino Acid Sequence Reveals Homology to the Corresponding Vertebrate Enzymes. Eur. J. Biochem. 1989, 184, 249–254.CrossRefGoogle Scholar
  17. 17.
    Hoffmann, D. R; Weimer, E. T.; Sakell, R. H.; Schmidt, M. Apis mellifera Venom Acid Phosphatase Precursor, mRNA, Complete cds, 2005: EMBL/GenBank/DDBJ databases, Brody School of Medicine, Greenville, NC 27834.Google Scholar
  18. 18.
    Schmidt, M.; Weimer, E. T.; Sakell, R. H.; Hoffman, D. R. Proteins in the High Molecular Weight Fraction of Honeybee Venom. J. Allergy Clin. Immunol. 2005, 115, 107.CrossRefGoogle Scholar
  19. 19.
    Ownby, C. L.; Powell, J. R.; Jiang, M. S.; Fletcher, J. E. Melittin and Phospholipase A, from Bee (Apis mellifera) Venom Cause Necrosis of Murine Skeletal Muscle in Vivo. Toxicon. 1997, 35, 67–80.CrossRefGoogle Scholar
  20. 20.
    Kettner, A.; Hughes, G. J.; Frutiger, S.; Astori, M.; Roggero, M.; Spertini, F.; Corradin, G. J. Api m 6: A new venom allergen. J. Allergy. Clin. Immunol. 2001, 107, 914–920.CrossRefGoogle Scholar
  21. 21.
    Hoffman, D. R. Hymenoptera Venom Allergens. Clin. Rev. Allergy Immunol. 2006, 30, 109–128.CrossRefGoogle Scholar
  22. 22.
    Shkenderov, S. A Protease Inhibitor in Bee Venom: Identification, Partial Purification, and some Properties. FEBS Lett. 1973, 15, 343–347.CrossRefGoogle Scholar
  23. 23.
    Kettner, A.; Henry, H.; Hughes, G. J.; Corradin, G.; Spertini, F. IgE and T-cell Responses to High-Molecular Weight Allergens from Bee Venom. Clin. Exp. Allergy. 1999, 29, 394–401.CrossRefGoogle Scholar
  24. 24.
    Winningham, K. M.; Schmidt, M.; Hoffman, D. R. Honeybee Venom Allergy: Cloning of the Apis mellifera Venom Protease. J. Allergy Clin. Immunol. 2001, 107, S221.Google Scholar
  25. 25.
    Winningham, K. M.; Fitch, C.; Schmidt, M.; Hoffman, D. Hymenoptera venom protease allergens. J. Allergy Clin. Immunol. 2004, 114, 928–933.CrossRefGoogle Scholar
  26. 26.
    King, T. P.; Spangfort, M. D. Structure and Biology of Stinging Insect Venom Allergens. Int. Arch. Allergy Immunol. 2000, 123, 99–106.CrossRefGoogle Scholar
  27. 27.
    Gmachl, M.; Kreil, G. The Precursors of the Bee Venom Constituents Apamin and MCD Peptide are Encoded by Two Genes in Tandem, Which Share the Same 3′-Exon. J. Biol. Chem. 1995, 270, 12704–12708.CrossRefGoogle Scholar
  28. 28.
    Hoffman, D. R. Hymenoptera Venoms: Composition, Standardization, Stability. In Monograph of Insect Allergy 4th ed., Chap. IV, Levine, M. I.; Lockey, R. F. Eds.; American Academy of Allergy Asthma and Immunology: Milwaukee, 2003; p. 37–53.Google Scholar
  29. 29.
    King, T. P.; Guralnick, M. Hymenoptera Allergens. Clin. Allergy Immunol. 2004, 18, 339–353.Google Scholar
  30. 30.
    Golden, D. B. K. Insect Sting Allergy and Venom Immunotherapy: A Model and a Mystery. Curr. Rev. Allergy Clin. Immunol. 2005, 116, 464–465.CrossRefGoogle Scholar
  31. 31.
    Freeman, T. M. Clinical Practice Hypersensitivity to hymenoptera stings. New. Engl. J. Med. 2004, 351, 1978–1984.CrossRefGoogle Scholar
  32. 32.
    Chaurand, P.; Schwartz, S. A.; Caprioli, R. M. Profiling and Imaging Proteins in Tissue Sections by MS. Anal. Chem. 2004, 76, 87A-93A.Google Scholar
  33. 33.
    Bunch, J.; Clench, M. R.; Richards, D. S. Determination of Pharmaceutical Compounds in Skin by Imaging Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2004, 18, 3051–3060.CrossRefGoogle Scholar
  34. 34.
    Trim, P. J.; Atkinson, S. J.; Princivalle, A. P.; Marshall, P. S.; West, A.; Clench, M. R. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Lipids in Rat Brain Tissue with Integrated Unsupervised Multivariant Statistical Analysis. Rapid Commun. Mass Spectrom. 2008, 22, 1503–1509.CrossRefGoogle Scholar
  35. 35.
    Cornett, D. S.; Frappier, S. L.; Caprioli, R. M. MALDI-FTICR Imaging Mass Spectrometry of Drugs and Metabolites in Tissue. Anal. Chem. 2008, 80, 5648–5653.CrossRefGoogle Scholar
  36. 36.
    Hoffman, D. R.; Shipman, W. H.; Babin, D. Allergens in Bee Venom II: Two New High Molecular Weight Allergenic Specificities. J. Allergy Clin. Immunol. 1977, 59, 147–153.CrossRefGoogle Scholar
  37. 37.
    Hoffman, D. R. Allergens in Bee Venom III: Identification of Allergen B as an Acid Phosphatase. J. Allergy Clin. Immunol. 1977, 59, 364–366.CrossRefGoogle Scholar
  38. 38.
    Ryssel, H.; Heitmann, C.; Germann, G.; Öhlbauer, M. Necrotizing Fasciitis After a Honey Bee Sting. Eur. J. Plast. Surg. 2007, 30, 11–14.CrossRefGoogle Scholar
  39. 39.
    Larche, M. Peptide Immunotherapy. Immunol. Allergy Clin. North Am. 2006, 26, 321–332.CrossRefGoogle Scholar
  40. 40.
    Habermann, E. Apamin. Pharmacol. Ther. 1984, 25, 255–270.CrossRefGoogle Scholar
  41. 41.
    Hollander, T.; Aeed, P. A.; Elhammer, A. P. Characterization of the Oligosaccharide Structures on Bee Venom Phospholipase A2. Carb. Res. 1993, 247, 291–297.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • Simona Francese
    • 1
  • Duccio Lambardi
    • 2
  • Guido Mastrobuoni
    • 1
  • Giancarlo la Marca
    • 3
  • Gloriano Moneti
    • 1
  • Stefano Turillazzi
    • 2
  1. 1.Interdepartmental Centre of Mass SpectrometryUniversity of FlorenceFlorenceItaly
  2. 2.Department of Evolutionary BiologyUniversity of FlorenceFlorenceItaly
  3. 3.Department of PharmacologyUniversity of Florence, Mass Spectrometry Laboratory, Metabolic and Neuromuscular Unit, Meyer Children’s HospitalFlorenceItaly

Personalised recommendations