Analysis of the trypanosome flagellar proteome using a combined electron transfer/collisionally activated dissociation strategy

  • Sarah R. Hart
  • King Wai Lau
  • Zhiqi Hao
  • Richard Broadhead
  • Neil Portman
  • Andreas Hühmer
  • Keith Gull
  • Paul G. McKean
  • Simon J. Hubbard
  • Simon J. Gaskell
Articles

Abstract

The use of electron-transfer dissociation as an alternative peptide ion activation method for generation of protein sequence information is examined here in comparison with the conventional method of choice, collisionally activated dissociation, using a linear ion trapping instrument. Direct comparability between collisionally and electron-transfer-activated product ion data were ensured by employing an activation-switching method during acquisition, sequentially activating precisely the same precursor ion species with each fragmentation method in turn. Sequest (Thermo Fisher Scientific, San Jose, CA) searching of product ion data generated an overlapping yet distinct pool of polypeptide identifications from the products of collisional and electron-transfer-mediated activation products. To provide a highly confident set of protein recognitions, identification data were filtered using parameters that achieved a peptide false discovery rate of 1%, with two or more independent peptide assignments required for each protein. The use of electron transfer dissociation (ETD) has allowed us to identify additional peptides where the quality of product ion data generated by collisionally activated dissociation (CAD) was insufficient to infer peptide sequence. Thus, a combined ETD/CAD approach leads to the recognition of more peptides and proteins than are achieved using peptide analysis by CAD- or ETD-based tandem mass spectrometry alone.

Supplementary material

13361_2011_200200167_MOESM1_ESM.ppt (56 kb)
Supplementary material, approximately 57 KB.
13361_2011_200200167_MOESM2_ESM.pdf (13 kb)
Supplementary material, approximately 14 KB.
13361_2011_200200167_MOESM3_ESM.ppt (3.3 mb)
Supplementary material, approximately 3444 KB.
13361_2011_200200167_MOESM4_ESM.ppt (56 kb)
Supplementary material, approximately 57 KB.
13361_2011_200200167_MOESM5_ESM.pdf (88 kb)
Supplementary material, approximately 90 KB.

References

  1. 1.
    Simpson, R. J.; Connolly, L. M.; Eddes, J. S.; Pereira, J. J.; Moritz, R. L.; Reid, G. E. Proteomic Analysis of the Human Colon Carcinoma Cell Line (LIM 1215): Development of a Membrane Protein Database. Electrophoresis 2000, 21, 1707–1732.CrossRefGoogle Scholar
  2. 2.
    Steen, H.; Mann, M. The ABC’s (and XYZ’s) of Peptide Sequencing. Nat. Rev. Mol. Cell Biol. 2004, 5, 699–711.CrossRefGoogle Scholar
  3. 3.
    Aebersold, R.; Goodlett, D. R. Mass Spectrometry in Proteomics. Chem. Rev. 2001, 101, 269–295.CrossRefGoogle Scholar
  4. 4.
    Larsen, M. R.; Trelle, M. B.; Thingholm, T. E.; Jensen, O. N. Analysis of Post-Translational Modifications of Proteins by Tandem Mass Spectrometry. Biotechniques 2006, 40, 790–798.CrossRefGoogle Scholar
  5. 5.
    Smith, R. D.; Barinaga, C. J.; Udseth, H. R. Tandem Mass-Spectrometry of Highly Charged Cytochrome c Molecular-Ions Produced by Electrospray Ionization. J. Phys. Chem. 1989, 93, 5019–5022.CrossRefGoogle Scholar
  6. 6.
    Nemeth-Cawley, J. F.; Rouse, J. C. Identification and Sequencing Analysis of Intact Proteins Via Collision-Induced Dissociation and Quadrupole Time-of-Flight Mass Spectrometry. J. Mass Spectrom. 2002, 37, 270–282.CrossRefGoogle Scholar
  7. 7.
    Raspopov, S. A.; El-Faramawy, A.; Thomson, B. A.; Siu, K. W. Infrared Multiphoton Dissociation in Quadrupole Time-of-Flight Mass Spectrometry: Top-Down Characterization of Proteins. Anal. Chem. 2006, 78, 4572–4577.CrossRefGoogle Scholar
  8. 8.
    Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. Electron Capture Dissociation of Multiply Charged Protein Cations: A Nonergodic Process. J. Am. Chem. Soc. 1998, 120, 3265–3266.CrossRefGoogle Scholar
  9. 9.
    Zubarev, R. A.; Horn, D. M.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A.; Lewis, M. A.; Carpenter, B. K.; McLafferty, F. W. Electron Capture Dissociation for Structural Characterization of Multiply Charged Protein Cations. Anal. Chem. 2000, 72, 563–573.CrossRefGoogle Scholar
  10. 10.
    Breuker, K.; Oh, H.; Lin, C.; Carpenter, B. K.; McLafferty, F. W. Nonergodic and Conformational Control of the Electron Capture Dissociation of Protein Cations. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 14011–14016.CrossRefGoogle Scholar
  11. 11.
    Syrstad, E. A.; Turecek, F. Toward a General Mechanism of Electron Capture Dissociation. J. Am. Soc. Mass Spectrom. 2005, 16, 208–224.CrossRefGoogle Scholar
  12. 12.
    Hudgins, R. R.; Håkansson, K.; Quinn, J. P.; Hendrickson, C. L.; Marshall, A. G., 50th American Society for Mass Spectrometry Conference on Mass Spectrometry and Allied Topics, May 2002, Orlando, FL.Google Scholar
  13. 13.
    Zubarev, R. A. Reactions of Polypeptide Ions with Electrons in the Gas Phase. Mass Spectrom. Rev. 2003, 22, 57–77.CrossRefGoogle Scholar
  14. 14.
    Chalmers, M. J.; Hakansson, K.; Johnson, R.; Smith, R.; Shen, J.; Emmett, M. R.; Marshall, A. G. Protein Kinase A Phosphorylation Characterized by Tandem Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Proteomics 2004, 4, 970–981.CrossRefGoogle Scholar
  15. 15.
    Cooper, H. J.; Hakansson, K.; Marshall, A. G. The Role of Electron Capture Dissociation in Biomolecular Analysis. Mass Spectrom. Rev. 2005, 24, 201–222.CrossRefGoogle Scholar
  16. 16.
    Creese, A. J.; Cooper, H. J. Liquid Chromatography Electron Capture Dissociation Tandem Mass Spectrometry (LC-ECD-MS/MS) Versus Liquid Chromatography Collision-Induced Dissociation Tandem Mass Spectrometry (LC-CID-MS/MS) for the Identification of Proteins. J. Am. Soc. Mass Spectrom. 2007, 18, 891–897.CrossRefGoogle Scholar
  17. 17.
    Syka, J. E.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Peptide and Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9528–9533.CrossRefGoogle Scholar
  18. 18.
    Brekenfeld, A.; Ledertheil, T.; Lubeck, M.; Baessmann, C.; Hartmer, R., 53rd American Society for Mass Spectrometry Conference on Mass Spectrometry and Allied Topics, May 2005, San Antonio, TX.Google Scholar
  19. 19.
    Coon, J. J.; Ueberheide, B.; Syka, J. E.; Dryhurst, D. D.; Ausio, J.; Shabanowitz, J.; Hunt, D. F. Protein Identification Using Sequential Ion/Ion Reactions and Tandem Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 9463–9468.CrossRefGoogle Scholar
  20. 20.
    Good, D. M.; Wirtala, M.; McAlister, G. C.; Coon, J. J. Performance Characteristics of Electron Transfer Dissociation Mass Spectrometry. Mol. Cell. Proteom. 2007, 6, 1942–1951.CrossRefGoogle Scholar
  21. 21.
    Broadhead, R.; Dawe, H. R.; Farr, H.; Griffiths, S.; Hart, S. R.; Portman, N.; Shaw, M. K.; Ginger, M. L.; Gaskell, S. J.; McKean, P. G.; Gull, K. Flagellar Motility is Required for the Viability of the Bloodstream Trypanosome. Nature 2006, 440, 224–227.CrossRefGoogle Scholar
  22. 22.
    Peng, J.; Elias, J. E.; Thoreen, C. C.; Licklider, L. J.; Gygi, S. P. Evaluation of Multidimensional Chromatography Coupled with Tandem Mass Spectrometry (LC/LC-MS/MS) for Large-Scale Protein Analysis: The Yeast Proteome. J. Proteome Res. 2003, 2, 43–50.CrossRefGoogle Scholar
  23. 23.
    Lundgren, D. H.; Han, D. K.; Eng, J. K. Protein Identification using TurboSEQUEST. Curr. Protoc. Bioinformatics. 2005, Chap. 13, Unit 13.3.Google Scholar
  24. 24.
    Good, D. M.; Coon, J. J. Advancing Proteomics with ion/ion Chemistry. Biotechniques 2006, 40, 783–789.CrossRefGoogle Scholar
  25. 25.
    Elias, J. E.; Gygi, S. P. Target-Decoy Search Strategy for Increased Confidence in Large-Scale Protein Identifications by Mass Spectrometry. Nat. Methods 2007, 4, 207–214.CrossRefGoogle Scholar
  26. 26.
    Swaney, D. L.; McAlister, G. C.; Wirtala, M.; Schwartz, J. C.; Syka, J. E.; Coon, J. J. Supplemental Activation Method for High-Efficiency Electron-Transfer Dissociation of Doubly Protonated Peptide Precursors. Anal. Chem. 2007, 79, 477–485.CrossRefGoogle Scholar
  27. 27.
    Molina, H.; Matthiesen, R.; Kandasamy, K.; Pandey, A. Comprehensive Comparison of Collision Induced Dissociation and Electron Transfer Dissociation. Anal. Chem. 2008, 80, 4825–4835.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2009

Authors and Affiliations

  • Sarah R. Hart
    • 1
  • King Wai Lau
    • 1
    • 2
  • Zhiqi Hao
    • 3
  • Richard Broadhead
    • 4
  • Neil Portman
    • 5
  • Andreas Hühmer
    • 3
  • Keith Gull
    • 5
  • Paul G. McKean
    • 4
  • Simon J. Hubbard
    • 2
  • Simon J. Gaskell
    • 1
  1. 1.Michael Barber Centre for Mass Spectrometry, School of Chemistry and Manchester Interdisciplinary BiocentreUniversity of ManchesterManchesterUnited Kingdom
  2. 2.Faculty of Life SciencesUniversity of ManchesterManchesterUnited Kingdom
  3. 3.Thermo Fisher ScientificSan JoseUSA
  4. 4.Department of Biological SciencesLancaster UniversityLancasterUnited Kingdom
  5. 5.Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom

Personalised recommendations