Journal of the American Society for Mass Spectrometry

, Volume 19, Issue 12, pp 1755–1763

Bifurcating fragmentation behavior of gas-phase tryptic peptide dications in collisional activation

  • Mikhail M. Savitski
  • Maria Fälth
  • Y. M. Eva Fung
  • Christopher M. Adams
  • Roman A. Zubarev
Focus: Peptide Fragmentation


Collision-activated dissociation (CAD) of tryptic peptides is a cornerstone of mass spectrometry-based proteomics research. Principal component analysis of a database containing 15,000 high-resolution CAD mass spectra of gas-phase tryptic peptide dications revealed that they fall into two classes with a good separation between the classes. The main factor determining the class identity is the relative abundance of the peptide bond cleavage after the first two N-terminal residues. A possible scenario explaining this bifurcation involves trans- to cis-isomerization of the N-terminal peptide bond, which facilitates solvation of the N-terminal charge on the second backbone amide and formation of stable b2 ions in the form of protonated diketopiperazines. Evidence supporting this scenario is derived from statistical analysis of the high-resolution CAD MS/MS database. It includes the observation of the strong deficit of a3 ions and anomalous amino acid preferences for b2 ion formation.


  1. 1.
    Perkins, D. N.; Pappin, D. J. C.; Creasy, D. M.; Cottrell, J. S. Probability-based Protein Identification by Searching Sequence Databases Using Mass Spectrometry Data. Electrophoresis 1999, 20, 3551–3567.CrossRefGoogle Scholar
  2. 2.
    Eng, J. K.; McCormack, A. L.; Yates, J. R. An Approach to Correlate Tandem Mass-Spectral Data of Peptides with Amino-Acid-Sequences in a Protein Database. J. Am. Soc. Mass Spectrom 1994, 5, 976–989.CrossRefGoogle Scholar
  3. 3.
    Lam, H.; Deutsch, E. W.; Eddes, J. S.; Eng, J. K.; King, N.; Stein, S. E.; Aebersold, R. Development and Validation of a Spectral Library Searching Method for Peptide Identification from MS/MS. Proteomics 2007, 7, 655–667.CrossRefGoogle Scholar
  4. 4.
    Zhang, Z. Q. Prediction of Low-energy Collision-induced Dissociation Spectra of Peptides. Anal. Chem 2004, 76, 3908–3922.CrossRefGoogle Scholar
  5. 5.
    Zhang, Z. Q. Prediction of Low-energy Collision-induced Dissociation Spectra of Peptides with Three or More Charges. Anal. Chem 2005, 77, 6364–6373.CrossRefGoogle Scholar
  6. 6.
    Savitski, M. M.; Kjeldsen, F.; Nielsen, M. L.; Garbuzynskiy, S. O.; Galzitskaya, O. V.; Surin, A. K.; Zubarev, R. A. Backbone Carbonyl Group Basicities Are Related to Gas-phase Fragmentation of Peptides and Protein Folding. Angew. Chem. Int. Ed. Engl 2007, 46, 1481–1484.CrossRefGoogle Scholar
  7. 7.
    Paizs, B.; Suhai, S. Fragmentation Pathways of Protonated Peptides. Mass Spectrom. Rev 2005, 24, 508–548.CrossRefGoogle Scholar
  8. 8.
    Wysocki, V. H.; Tsaprailis, G.; Smith, L. L.; Breci, L. A. Special Feature: Commentary—Mobile and Localized Protons: A Framework for Understanding Peptide Dissociation. J. Mass Spectrom 2000, 35, 1399–1406.CrossRefGoogle Scholar
  9. 9.
    Nielsen, M. L.; Savitski, M. M.; Zubarev, R. A. Improving Protein Identification Using Complementary Fragmentation Techniques in Fourier Transform Mass Spectrometry. Mol. Cell. Proteomics 2005, 4, 835–845.CrossRefGoogle Scholar
  10. 10.
    Savitski, M. M.; Nielsen, M. L.; Zubarev, R. A. New Data Base-independent, Sequence Tag-based Scoring of Peptide MS/MS Data Validates Mowse Scores, Recovers below Threshold Data, Singles Out Modified Peptides, and Assesses the Quality of MS/MS Techniques. Mol. Cell. Proteomics 2005, 4, 1180–1188.CrossRefGoogle Scholar
  11. 11.
    Savitski, M. M.; Kjeldsen, F.; Nielsen, M. L.; Zubarev, R. A. Complementary Sequence Preferences of Electron-Capture Dissociation and Vibrational Excitation in Fragmentation of Polypeptide Polycations. Angew. Chem. Int. Ed. Engl 2006, 45, 5301–5303.CrossRefGoogle Scholar
  12. 12.
    Shelimov, K. B.; Jarrold, M. F. Conformations, Unfolding, and Refolding of Apomyoglobin in Vacuum: An Activation Barrier for Gas-Phase Protein Folding. J. Am. Chem. Soc 1997, 119, 2987–2994.CrossRefGoogle Scholar
  13. 13.
    Burlet, O.; Yang, C. Y.; Gaskell, S. J. Influence of Cysteine to Cysteic Acid Oxidation on the Collision-Activated Decomposition of Protonated Peptides — Evidence for Intraionic Interactions. J. Am. Soc. Mass Spectrom 1992, 3, 337–344.CrossRefGoogle Scholar
  14. 14.
    Hamelberg, D.; McCammon, J. A. Fast Peptidyl cis-trans Isomerization within the Flexible Gly-rich Flaps of HIV-1 Protease. J. Am. Chem. Soc 2005, 127, 13778–13779.CrossRefGoogle Scholar
  15. 15.
    Samuelson, S.; Martyna, G. J. Computer Simulation Studies of Finite Temperature Conformational Equilibrium in Alanine-based Peptides. J. Phys. Chem. B 1999, 103, 1752–1766.CrossRefGoogle Scholar
  16. 16.
    Paizs, B.; Suhai, S. Combined Quantum Chemical and RRKM Modeling of the Main Fragmentation Pathways of Protonated GGG: I. Cis-trans Isomerization Around Protonated Amide Bonds. Rapid Commun. Mass Spectrom 2001, 15, 2307–2323CrossRefGoogle Scholar
  17. 17.
    Smith, L. L.; Herrmann, K. A.; Wysocki, V. H. Investigation of Gas Phase ion Structure for Proline-Containing b(2) Ion. J. Am. Soc. Mass Spectrom 2006, 17, 20–28.CrossRefGoogle Scholar
  18. 18.
    Farrugia, J. M.; O’Hair, R. A. J.; Reid, G. E. Do All b(2) Ions Have Oxazolone Structures?: Multistage Mass Spectrometry and Ab Initio Studies on Protonated N-Acyl Amino Acid Methyl Ester Model Systems. Int. J. Mass Spectrom 2001, 210, 71–87.CrossRefGoogle Scholar
  19. 19.
    Counterman, A. E.; Clemmer, D. E. Anhydrous Polyproline Helices and Globules. J. Phys. Chem. B 2004, 108, 4885–4898.CrossRefGoogle Scholar
  20. 20.
    Hunt, D. F.; Yates, Y. R.; Shabanowitz, J.; Winston, S.; Hauer, C. R. Protein Sequencing by Tandem Mass Spectrometry. Proc. Natl. Acad. Sci. U. S. A 1986, 83, 6233–6237.CrossRefGoogle Scholar
  21. 21.
    Huang, Y.; Triscari, J. M.; Wysocki, V. H.; Pasa-Tolic, L.; Anderson, G. A.; Lipton, M. S.; Smith, R. D. Dissociation Behaviors of Doubly-Charged Tryptic Peptides: Correlation of Gas-Phase Cleavage Abundance with Ramachandran Plots. J. Am. Chem. Soc 2004, 126, 3034–3035.CrossRefGoogle Scholar
  22. 22.
    Cordero, M. M.; Houser, J. J.; Wesdemiotis, C. The Neutral Products Formed during Backbone Fragmentations of Protonated Peptides in Tandem Mass Spectrometry. Anal. Chem 1993, 65, 1594–1601.CrossRefGoogle Scholar
  23. 23.
    Paizs, B.; Suhai, S. Combined Quantum Chemical and RRKM Modeling of the Main Fragmentation Pathways of Protonated GGG: II. Formation of b(2), y(1), and y(2) Ions. Rapid Commun. Mass Spectrom 2002, 16, 375–389.CrossRefGoogle Scholar
  24. 24.
    Paizs, B.; Suhai, S. Towards Understanding the Tandem Mass Spectra of Protonated Oligopeptides: 1: Mechanism of Amide Bond Cleavage. J. Am. Soc. Mass Spectrom 2004, 15, 103–113.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Mikhail M. Savitski
    • 1
  • Maria Fälth
    • 1
  • Y. M. Eva Fung
    • 1
  • Christopher M. Adams
    • 1
  • Roman A. Zubarev
    • 1
  1. 1.Division of Molecular Biometry, Institute for Cell and Molecular BiologyUppsala UniversityUppsalaSweden

Personalised recommendations