Application of membrane inlet mass spectrometry for online and in situ analysis of methane in aquatic environments

Focus: Harsh Environment Mass Spectrometry

Abstract

A method is presented for the online measurement of methane in aquatic environments by application of membrane inlet mass spectrometry (MIMS). For this purpose, the underwater mass spectrometer Inspectr200-200 was applied. A simple and reliable volumetric calibration technique, based on the mixing of two end member concentrations, was used for the analysis of CH4 by MIMS. To minimize interferences caused by the high water vapor content, permeating through the membrane inlet system into the vacuum section of the mass spectrometer, a cool-trap was designed. With the application of the cool-trap, the detection limit was lowered from 100 to 16 nmol/L CH4. This allows for measurements of methane concentrations in surface and bottom waters of coastal areas and lakes. Furthermore, in case of membrane rupture, the cool-trap acts as a security system, avoiding total damage of the mass spectrometer by flushing it with water. The Inspectr200-200 was applied for studies of methane and carbon dioxide concentrations in coastal areas of the Baltic Sea and Lake Constance. The low detection limit and fast response time of the MIMS allowed a detailed investigation of methane concentrations in the vicinity of gas seepages.

References

  1. 1.
    Hovland, M.; Judd, A. J. (1988). Seabed Pockmarks and Seepages. Graham and Trotman Limited, London.Google Scholar
  2. 2.
    Fleischer, P.; Orsi, T. H.; Richardson, M. D.; Anderson, A. L. Distribution of free gas in marine sediments: a global overview. Geo-Marine. Lett. 2001, 21, 103–122.CrossRefGoogle Scholar
  3. 3.
    Milkov, A. V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol. 2000, 167, 29–42.CrossRefGoogle Scholar
  4. 4.
    Kvenvolden, K. A.; Lorenson, T. D. (2001). The global occurrence of natural gas hydrate. In Paull, C. K.; Dillon, W. D. (Eds.), Natural Gas Hydrates: Occurrence, Distribution, and Detection. Geophy. Monogr. 124: 3–18.Google Scholar
  5. 5.
    Wiesenburg, D. A.; Guinasso, N. L. Jr. Equilibrium solubilities of methane, carbon monoxide, hydrogen in water and seawater. J. Chem. Eng. Data. 1979, 24, 356–360.CrossRefGoogle Scholar
  6. 6.
    Weiss, R. F. Determinations of carbon dioxide and methane by dual catalyst flame ionization chromatography and nitrous oxide by electron capture chromatography. J. Chromatogr. Sci. 1981, 19, 611–616.CrossRefGoogle Scholar
  7. 7.
    Weiss, R. F.; Van Woy, F. A.; Salameh, P. I. L. (1992). Surface water and atmospheric carbon dioxide observations by shipboard automated gas chromatography: Results from expeditions between 1977 and 1990. Scripps Institution of Oceanography, Environmental Sciences Division Publication No. 3987, SIO Reference 92-11.Google Scholar
  8. 8.
    Lammers, S.; Suess, E. An improved head-space analysis method for methane in seawater. Mar. Chem. 1994, 47, 115–125.CrossRefGoogle Scholar
  9. 9.
    Lloyd, D.; Thomas, K.; Price, D.; O’Neil, B.; Oliver, K.; Williams, T. N. A membrane-inlet mass spectrometer miniprobe for the direct simultaneous measurement of multiple gas species with spatial resolution of 1 mm. J. Microbiol. Methods 1996, 25, 145–151.CrossRefGoogle Scholar
  10. 10.
    Lloyd, D.; Thomas, K. L.; Cowie, G.; Tammam, J. D.; Williams, A. G. Direct interface of chemistry to microbiol. systems: membrane inlet mass spectrometr. J. Microbiol. Methods 2002, 48, 289–302.CrossRefGoogle Scholar
  11. 11.
    Benstead, J.; Lloyd, D. Spatial and temporal variations of dissolved gases. (CH 4 CO2, and. O2) in. peat. cores. Microbial. Ecol. 1996, 31, 57–66.Google Scholar
  12. 12.
    Sheppard, S. K.; Lloyd, D. Effects of soil amendment on gas depth profiles in soil monoliths using direct mass spectrometric measurement. Bioresource. Technol. 2002, 84, 39–47.CrossRefGoogle Scholar
  13. 13.
    Yang, X.; Shang, C. Quantification of aqueous cyanogen chloride and cyanogen bromide in environmental samples by MIMS. Water. Res. 2005, 39, 1709–1718.CrossRefGoogle Scholar
  14. 14.
    Tortell, P. D. Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometry. Limnol. Oceanogr. Methods 3 2005, 2005, 24–37.CrossRefGoogle Scholar
  15. 15.
    Hartnett, H. E.; Seitzinger, S. P. High-resolution nitrogen gas profiles in sediment porewaters using a new membrane probe for membrane-inlet mass spectrometry. Mar. Chem. 2003, 83, 23–30.CrossRefGoogle Scholar
  16. 16.
    Short, R. T.; Fries, D. P.; Toler, S. K.; Lembke, C. E.; Byrne, R. H. Development of an underwater mass-spectrometry system for in situ chemical analysis. Meas. Sci. Technol. 1999, 10, 1195–1201.CrossRefGoogle Scholar
  17. 17.
    Short, R. T.; Toler, S. K.; Kibelka, G. P. G.; Rueda Roa, D. T.; Bell, R. J.; Byrne, R. H. Detection and quantification of chemical plumes using a portable underwater membrane introduction mass spectrometer. Trends. Anal. Chem. 2006, 25(7), 637–646.CrossRefGoogle Scholar
  18. 18.
    Matz, G.; Kibelka, G.; Dahl, J.; Lennemann, F. Experimental study on solvent-less sample preparation methods—Membrane extraction with a sorbent interface, thermal membrane desorption application and purge-and-trap. J. Chromatogr. 1999, 830(2), 365–376.CrossRefGoogle Scholar
  19. 19.
    Hemond, H.; Camilli, R. NEREUS: “engineering concept for an underwater mass spectrometer.”. Trends. Anal. Chem. 2002, 21, 526–533.CrossRefGoogle Scholar
  20. 20.
    Camilli, R.; Hemond, H. F. (2004). NEREUS/Kemonaut, a mobile autonomous underwater mass spectrometer. Trends. Anal. Chem. 2004, 23, 307–313, 2004.CrossRefGoogle Scholar
  21. 21.
    Wenner, P. G.; Bell, P. G.; van Amerom, F. H. W.; Toler, S. K.; Edkins, J. E.; Hall, M. L.; Koehn, K.; Short, R. T.; Byrne, R. H. Environmental chemical mapping using an underwater mass spectrometer. Trends. Anal. Chem. 2004, 23, 288–295.CrossRefGoogle Scholar
  22. 22.
    Kibelka, G. P. G.; Short, R. T.; Toler, S. K.; Edkins, J. E.; Byrne, R. H. Field-deployed underwater mass spectrometers for investigations of transient chemical systems. Talanta 2004, 64, 961–969.CrossRefGoogle Scholar
  23. 23.
    Bell, R. J.; Short, R. T.; van Amerom, F. H. W.; Byrne, R. H. Calibration of an In Situ Membrane Inlet Mass Spectrometer for measurements of dissolved gases and volatile organics in seawater. Environ. Sci. Technol. 2007, 41, 8123–8128.CrossRefGoogle Scholar
  24. 24.
    Schlüter, M.; Linke, P.; Suess, E. Geochemistry of a sealed deep-sea borehole on the Cascadia Margin. Mar. Geol. 1998, 148, 9–20.CrossRefGoogle Scholar
  25. 25.
    Lloyd, D.; Scott, R. I. Direct measurement of dissolved gases in microbiological systems using membrane inlet mass spectrometry. J. Microbiol. Methods. Vol. 1983, 1, 313–328.CrossRefGoogle Scholar
  26. 26.
    Short, R. T.; Fries, D. P.; Kerr, M. L.; Lembke, C. E.; Toler, S. K.; Wenner, P. G.; Byrne, R. H. Underwater mass spectrometers for in-situ chemical analysis of the hydrosphere. J. Am. Soc. Mass. Spectrom. 2001, 12, 676–682.CrossRefGoogle Scholar
  27. 27.
    Holmes, M. F.; Sansone Rust, T.; Popp, P. Methane Production, Consumption, and Air-Sea Exchange in the Open Ocean: An Evaluation Based on Carbon Isotopic Ratios: Global Biogeochem. Cycles 2000, 14(1), 1–10.CrossRefGoogle Scholar
  28. 28.
    Middelburg, J. J.; Nieuwhenhuize, J.; Iversen, N.; Hogh, N.; DeWilde, H.; Helder, W.; Seifert, R.; Christof, O. Methane distribution in European tidal estuaries. Biogeochemistry. 2002, 59, 95–119.CrossRefGoogle Scholar
  29. 29.
    Bange, H. W.; Bartell, U. H.; Rapsomanikis, S.; Andreae, M. O. Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane: Global Biogeochem. Cycles 1994, 8, 465–480.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  1. 1.Alfred-Wegener Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations