Resolving and assigning N-linked glycan structural isomers from ovalbumin by IMS-MS

  • Manolo D. Plasencia
  • Dragan Isailovic
  • Samuel I. Merenbloom
  • Yehia Mechref
  • David E. Clemmer
Articles

Abstract

Ion mobility-mass spectrometry (IMS-MS) and molecular modeling techniques have been used to characterize ovalbumin N-linked glycans. Some glycans from this glycoprotein exist as multiple isomeric forms. The gas-phase separation makes it possible to resolve some isomers before MS analysis. Comparisons of experimental cross sections for selected glycan isomers with values that are calculated for iterative structures generated by molecular modeling techniques allow the assignment of sharp features to specific isomers. We focus here on an example glycan set, each having a m/z value of 1046.52 with formula [H5N4+2Na]2+, where H corresponds to a hexose, and N to a N-acetylglucosamine. This glycan appears to exist as three different isomeric forms that are assignable based on comparisons of measured and calculated cross sections. We estimate the relative ratios of the abundances of the three isomers to be in the range of ∼1.0:1.35:0.85 to ∼1.0:1.5:0.80. In total, IMS-MS analysis of ovalbumin N-linked glycans provides evidence for 19 different glycan structures corresponding to high-mannose and hybrid type carbohydrates with a total of 42 distinct features related to isomers and/or conformers.

References

  1. 1.
    Varki, A. Biological Roles of Oligosaccharides—All of the Theories are Correct. Glycobiology 1993, 3, 97–130.CrossRefGoogle Scholar
  2. 2.
    Bertozzi, C. R.; Kiessling, L. L. Chemical Glycobiology. Science 2001, 291, 2357–2364.CrossRefGoogle Scholar
  3. 3.
    Dennis, J. W.; Granovsky, M.; Warren, C. E. Protein Glycosylation in Development and Disease. Bioessays 1999, 21, 412–421.CrossRefGoogle Scholar
  4. 4.
    Kornfeld, R.; Kornfeld, S. Assembly of Asparagine-Linked Oligosaccharides. Annu. Rev. Biochem. 1985, 54, 631–664.CrossRefGoogle Scholar
  5. 5.
    Huntington, J. A.; Stein, P. E. Structure and Properties of Ovalbumin. J. Chromatogr. B. 2001, 756, 189–198.CrossRefGoogle Scholar
  6. 6.
    Harvey, D. J.; Wing, D. R.; Kuster, B.; Wilson, I. B. H. Composition of N-Linked Carbohydrates from Ovalbumin and Copurified Glycoproteins. J. Am. Soc. Mass Spectrom. 2000, 11, 564–571.CrossRefGoogle Scholar
  7. 7.
    Yamashita, K.; Kamerling, J. P.; Kobata, A. Structural Study of the Carbohydrate Moiety of Hen Ovomucoid—Occurrence of a Series of Penta-Antennary Complex-Type Asparagine-Linked Sugar Chains. J. Biol. Chem. 1982, 257, 2809–2814.Google Scholar
  8. 8.
    Yamashita, K.; Kamerling, J. P.; Kobata, A. Structural Studies of the Sugar Chains of Hen Ovomucoid—Evidence Indicating That They Are Formed Mainly by the Alternate Biosynthetic Pathway of Asparagine-Linked Sugar Chains. J. Biol. Chem. 1983, 258, 3099–3106.Google Scholar
  9. 9.
    Yamashita, K.; Tachibana, Y.; Hitoi, A.; Kobata, A. Sialic Acid-Containing Sugar Chains of Hen Ovalbumin and Ovomucoid. Carbohydr. Res. 1984, 130, 271–288.CrossRefGoogle Scholar
  10. 10.
    Yamashita, K.; Tachibana, Y.; Kobata, A. Structures of Galactose-Containing Sugar Chains of Ovalbumin. J. Biol. Chem. 1978, 253, 3862–3869.Google Scholar
  11. 11.
    Yamashita, K.; Ueda, I.; Kobata, A. Sulfated Asparagine-Linked Sugar Chains of Hen Egg Albumin. J. Biol. Chem. 1983, 258, 4144–4147.Google Scholar
  12. 12.
    Mao, X. L.; Wang, K.; Du, Y. G.; Lin, B. C. Analysis of Chicken and Turkey Ovalbumins by Microchip Electrophoresis Combined with Exoglycosidase Digestion. Electrophoresis 2003, 24, 3273–3278.CrossRefGoogle Scholar
  13. 13.
    Madera, M.; Mechref, Y.; Novotny, M. V. Combining Lectin Microcolumns with High-Resolution Separation Techniques for Enrichment of Glycoproteins and Glycopeptides. Anal. Chem. 2005, 77, 4081–4090.CrossRefGoogle Scholar
  14. 14.
    Mechref, Y.; Novotny, M. V. Structural Investigations of Glycoconjugates at High Sensitivity. Chem. Rev. 2002, 102, 321–369.CrossRefGoogle Scholar
  15. 15.
    Zaia, J. Mass Spectrometry of Oligosaccharides. Mass Spectrom. Rev. 2004, 23, 161–227.CrossRefGoogle Scholar
  16. 16.
    Mechref, Y.; Kang, P.; Novotny, M. V. Differentiating Structural Isomers of Sialylated Glycans by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight/Time-of-Flight Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 1381–1389.CrossRefGoogle Scholar
  17. 17.
    Mechref, Y.; Novotny, M. V.; Krishnan, C. Structural Characterization of Oligosaccharides Using MALDI-TOF/TOF Tandem Mass Spectrometry. Anal. Chem. 2003, 75, 4895–4903.CrossRefGoogle Scholar
  18. 18.
    Valentine, S. J.; Liu, X. Y.; Plasencia, M. D.; Hilderbrand, A. E.; Kurulugama, R. T.; Koeniger, S. L.; Clemmer, D. E. Developing Liquid Chromatography Ion Mobility Mass Spectrometry Techniques. Expert Rev. Proteom. 2005, 2, 553–565.CrossRefGoogle Scholar
  19. 19.
    Koeniger, S. L.; Valentine, S. J.; Myung, S.; Plasencia, M.; Lee, Y. J.; Clemmer, D. E. Development of Field Modulation in a Split-Field Drift Tube for High-Throughput Multidimensional Separations. J. Proteome Res. 2005, 4, 25–35.CrossRefGoogle Scholar
  20. 20.
    Sowell, R. A.; Koeniger, S. L.; Valentine, S. J.; Moon, M. H.; Clemmer, D. E. Nanoflow LCIMS-MS and LCIMS-CID/MS of Protein Mixtures. J. Am. Soc. Mass Spectrom. 2004, 15, 1341–1353.CrossRefGoogle Scholar
  21. 21.
    Wu, C.; Siems, W. F.; Klasmeier, J.; Hill, H. H. Separation of Isomeric Peptides Using Electrospray Ionization/High-Resolution Ion Mobility Spectrometry. Anal. Chem. 2000, 72, 391–395.CrossRefGoogle Scholar
  22. 22.
    McLean, J. A.; Ruotolo, B. T.; Gillig, K. J.; Russell, D. H. Ion Mobility-Mass Spectrometry: A New Paradigm for Proteomics. Int. J. Mass Spectrom. 2005, 240, 301–315.CrossRefGoogle Scholar
  23. 23.
    Jarrold, M. F. Peptides and Proteins in the Vapor Phase. Annu. Rev. Phys. Chem. 2000, 51, 179–207.CrossRefGoogle Scholar
  24. 24.
    Jin, L.; Barran, P. E.; Deakin, J. A.; Lyon, M.; Uhrin, D. Conformation of Glycosaminoglycans by Ion Mobility Mass Spectrometry and Molecular Modeling. Phys. Chem. Chem. Phys. 2005, 7, 3464–3471.CrossRefGoogle Scholar
  25. 25.
    Clowers, B. H.; Dwivedi, P.; Steiner, W. E.; Hill, H. H.; Bendiak, B. Separation of Sodiated Isobaric Disaccharides and Trisaccharides Using Electrospray Ionization-Atmospheric Pressure Ion Mobility-Time of Flight Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2005, 16, 660–669.CrossRefGoogle Scholar
  26. 26.
    Clowers, B. H.; Hill, H. H. Mass Analysis of Mobility-Selected Ion Populations Using Dual Gate, Ion Mobility, Quadrupole Ion Trap Mass Spectrometry. Anal. Chem. 2005, 77, 5877–5885.CrossRefGoogle Scholar
  27. 27.
    Gabryelski, W.; Froese, K. L. Rapid and Sensitive Differentiation of Anomers, Linkage, and Position Isomers of Disaccharides Using High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS). J. Am. Soc. Mass Spectrom. 2003, 14, 265–277.CrossRefGoogle Scholar
  28. 28.
    Lee, S.; Wyttembach, T.; Bowers, M. T. Gas-Phase Structures of Sodiated Oligosaccharides by Ion Mobility Ion Chromatography Methods. Int. J. Mass Spectrom. 1997, 167/168, 605–614.CrossRefGoogle Scholar
  29. 29.
    Mechref, Y.; Novotny, M. V. Mass Spectrometric Mapping and Sequencing of N-linked Oligosaccharides Derived from Submicrogram Amounts of Glycoproteins. Anal. Chem. 1998, 70, 455–463.CrossRefGoogle Scholar
  30. 30.
    Ciucanu, I.; Costello, C. E. Elimination of Oxidative Degradation During the per-O-Methylation of Carbohydrates. J. Am. Chem. Soc. 2003, 125, 16213–16219.CrossRefGoogle Scholar
  31. 31.
    Kang, P.; Mechref, Y.; Klouckova, I.; Novotny, M. V. Solid-Phase Permethylation of Glycans for Mass Spectrometric Analysis. Rapid Commun. Mass Spectrom. 2005, 19, 3421–3428.CrossRefGoogle Scholar
  32. 32.
    Kang, P.; Mechref, Y.; Novotny, M. V. High-Throughput Solid-Phase permethylation of Glycans Prior to Mass Spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 721–734.CrossRefGoogle Scholar
  33. 33.
    Merenbloom, S. I.; Koeniger, S. L.; Valentine, S. J.; Plasencia, M. D.; Clemmer, D. E. IMS-IMS and IMS-IMS-IMS/MS for Separating Peptide and Protein Fragment Ions. Anal. Chem. 2006, 78, 2802–2809.CrossRefGoogle Scholar
  34. 34.
    Tang, K.; Shvartsburg, A. A.; Lee, H. N.; Prior, D. C.; Buschbach, M. A.; Li, F. M.; Tolmachev, A. V.; Anderson, G. A.; Smith, R. D. High-Sensitivity Ion Mobility Spectrometry/Mass Spectrometry Using Electrodynamic Ion Funnel Interfaces. Anal. Chem. 2005, 77, 3330–3339.CrossRefGoogle Scholar
  35. 35.
    Koeniger, S. L.; Merenbloom, S. I.; Valentine, S. J.; Jarrold, M. F.; Udseth, H. R.; Smith, R. D.; Clemmer, D. E. An IMS-IMS Analogue of MS-MS. Anal. Chem. 2006, 78, 4161–4174.CrossRefGoogle Scholar
  36. 36.
    Valentine, S. J.; Counterman, A. E.; Clemmer, D. E. Conformer-Dependent Proton-Transfer Reactions of Ubiquitin Ions. J. Am. Soc. Mass Spectrom. 1997, 8, 954–961.CrossRefGoogle Scholar
  37. 37.
    Li, J. W.; Taraszka, J. A.; Counterman, A. E.; Clemmer, D. E. Influence of Solvent Composition and Capillary Temperature on the Conformations of Electrosprayed Ions: Unfolding of Compact Ubiquitin Conformers from Pseudonative and Denatured Solutions. Int. J. Mass Spectrom. 1999, 187, 37–47.CrossRefGoogle Scholar
  38. 38.
    Koeniger, S. L.; Merenbloom, S. I.; Clemmer, D. E. Evidence for Many Resolvable Structures Within Conformation Types of Electrosprayed Ubiquitin Ions. J. Phys. Chem. B. 2006, 110, 7017–7021.CrossRefGoogle Scholar
  39. 39.
    Mason, E. A.; McDaniel, E. W. Transport Properties of Ions in Gases; Wiley: New York, 1988;137–216.CrossRefGoogle Scholar
  40. 40.
    Thalassinos, K.; Slade, S. E.; Jennings, K. R.; Scrivens, J. H.; Giles, K.; Wildgoose, J.; Hoyes, J.; Bateman, R. H.; Bowers, M. T. Ion Mobility Mass Spectrometry of Proteins in a Modified Commercial Mass Spectrometer. Int. J. Mass Spectrom. 2004, 236, 55–63.CrossRefGoogle Scholar
  41. 41.
    Homans, S. W. A Molecular Mechanical Force-Field for the Conformational Analysis of Oligosaccharides: Comparison of Theoretical and Crystal Structures of man-α1–3 man-β1–4 glcnac. Biochemistry. 1990, 29, 9110–9118.CrossRefGoogle Scholar
  42. 42.
    Counterman, A. E.; Clemmer, D. E. Volumes of Individual Amino Acid Residues in Gas-Phase Peptide Ions. J. Am. Chem. Soc. 1999, 121, 4031–4039.CrossRefGoogle Scholar
  43. 43.
    Counterman, A. E.; Clemmer, D. E. Cis-Trans Signatures of Proline-Containing Tryptic Peptides in the Gas Phase. Anal. Chem. 2002, 74, 1946–1951.CrossRefGoogle Scholar
  44. 44.
    Fukui, K.; Kameyama, A.; Mukai, Y.; Takahashi, K.; Ikeda, N.; Akiyama, Y.; Narimatsu, H. A Computational Study of Structure-Reactivity Relationships in Na-Adduct Oligosaccharides in Collision-Induced Dissociation Reactions. Carbohydr. Res. 2006, 341, 624–633.CrossRefGoogle Scholar
  45. 45.
    Wyttenbach, T.; vonHelden, G.; Batka, J. J.; Carlat, D.; Bowers, M. T. Effect of the Long-Range Potential on Ion Mobility Measurements. J. Am. Soc. Mass Spectrom. 1997, 8, 275–282.CrossRefGoogle Scholar
  46. 46.
    Valentine, S. J.; Counterman, A. E.; Hoaglund, C. S.; Reilly, J. P.; Clemmer, D. E. Gas-Phase Separations of Protease Digests. J. Am. Soc. Mass Spectrom. 1998, 9, 1213–1216.CrossRefGoogle Scholar
  47. 47.
    Henderson, S. C.; Valentine, S. J.; Counterman, A. E.; Clemmer, D. E. ESI/Ion Trap/Ion Mobility/Time-of-Flight Mass Spectrometry for Rapid and Sensitive Analysis of Biomolecular Mixtures. Anal. Chem. 1999, 71, 291–301.CrossRefGoogle Scholar
  48. 48.
    Lattova, E.; Snovida, S.; Perreault, H.; Krokhin, O. Influence of the Labeling Group on Ionization and Fragmentation of Carbohydrates in Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2005, 16, 683–696.CrossRefGoogle Scholar
  49. 49.
    Lattova, E.; Perreault, H. N.; Krokhin, O. Matrix-Assisted Laser Desorption/Ionization Tandem Mass Spectrometry and Post-Source Decay Fragmentation Study of Phenylhydrazones of N-Linked Oligosaccharides from Ovalbumin. J. Am. Soc. Mass Spectrom. 2004, 15, 725–735.CrossRefGoogle Scholar
  50. 50.
    Vonhelden, G. M.; Hsu, T.; Kemper, P. R.; Bowers, M. T. Structures of Carbon Cluster Ions from 3 to 60 Atoms—Linears to Rings to Fullerenes. J. Chem. Phys. 1991, 95, 3835–3837.CrossRefGoogle Scholar
  51. 51.
    Hunter, J.; Fye, J.; Jarrold, M. F. Carbon rings. J. Phys. Chem. 1993, 97, 3460–3462.CrossRefGoogle Scholar
  52. 52.
    Srebalus, C. A.; Li, J.; Marshall, W. S.; Clemmer, D. E. Gas-Phase Separations of Electrosprayed Peptide Libraries. Anal. Chem. 1999, 71, 3918–3927.CrossRefGoogle Scholar
  53. 53.
    Isailovic, D.; Kurulugama, R. T.; Plasencia, M. D.; Stokes, S. T.; Kyselova, Z.; Goldman, R.; Mechref, Y.; Novotny, M. V.; Clemmer, D. E. Profiling of Human Serum Glycans Associated with Liver Cancer and Cirrhosis by IMS-MS. J. Proteome Res. 2008, 7, 1109–1117.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Manolo D. Plasencia
    • 1
  • Dragan Isailovic
    • 1
  • Samuel I. Merenbloom
    • 1
  • Yehia Mechref
    • 1
  • David E. Clemmer
    • 1
  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations