Journal of the American Society for Mass Spectrometry

, Volume 19, Issue 12, pp 1897–1905

Atmospheric pressure thermal dissociation of phospho- and sulfopeptides

  • Lívia S. Eberlin
  • Yu Xia
  • Hao Chen
  • R. Graham Cooks
Articles

Abstract

Several phospho- and sulfopeptides were subjected to atmospheric pressure thermal dissociation (APTD), which was effected by passing peptide ions generated by electrosonic spray ionization (ESSI) through a heated coiled metal tube. Sequence informative fragment ions including a-, b-, c-, and y-types of ions were observed with increased relative intensities under APTD compared with collision-induced dissociation (CID), performed inside the ion trap. A certain degree of preservation of phosphate and sulfate ester moieties was observed for some fragments ions under APTD. The neutral fragments generated outside the mass spectrometer were further analyzed via on-line corona discharge to provide rich and complementary sequence information to that provided by the fragment ions directly obtained from APTD, although complete losses of the modification groups were noted. Improved primary sequence information for phospho- and sulfopeptides was typically obtained by analyzing both ionic and neutral fragments from APTD compared with fragment ions from CID alone. Localization of the modification sites of phospho- and sulfopeptides was achieved by combining the structural information acquired from APTD and CID.

References

  1. 1.
    Aebersold, R.; Goodlett, D. R. Mass Spectrometry in Proteomics. Chem. Rev. 2001, 101, 269–295.CrossRefGoogle Scholar
  2. 2.
    Wells, J. M.; McLuckey, S. A. Collision-Induced Dissociation (CID) of Peptides and Proteins. Methods Enzymol. 2005, 402, 148–185.CrossRefGoogle Scholar
  3. 3.
    Dongre, A. R.; Somogyi, A.; Wysocki, V. H. Surface-Induced Dissociation: An Effective Tool to Probe Structure, Energetics, and Fragmentation Mechanisms of Protonated Peptides. J. Mass Spectrom. 1996, 31, 339–350CrossRefGoogle Scholar
  4. 4.
    Little, D. P.; Speir, J. P.; Senko, M. W.; O’Connor, P. B.; McLafferty, F. W. Infrared Multiphoton Dissociation of Large Multiply Charged Ions for Biomolecule Sequencing. Anal. Chem. 1994, 66, 2809–2815CrossRefGoogle Scholar
  5. 5.
    Woodin, R. L.; Bomse, D. S.; Beauchamp, J. L. Multi-Photon Dissociation of Molecules with Low-Power Continuous Wave Infrared-Laser Radiation. J. Am. Chem. Soc. 1978, 100, 3248–3250.CrossRefGoogle Scholar
  6. 6.
    Price, W. D.; Schnier, P. D.; Williams, E. R. Tandem Mass Spectrometry of Large Biomolecule Ions by Blackbody Infrared Radiative Dissociation. Anal. Chem. 1996, 68, 859–866.CrossRefGoogle Scholar
  7. 7.
    Bowers, W. D.; Delbert, S. S.; Hunter, R. L.; McIver, R. T. Fragmentation of Oligopeptide Ions Using Ultraviolet-Laser Radiation and Fourier-Transform Mass-Spectrometry. J. Am. Chem. Soc. 1984, 106, 7288–7289.CrossRefGoogle Scholar
  8. 8.
    Thompson, M. S.; Cui, W. D.; Reilly, J. P. Fragmentation of Singly Charged Peptide Ions by Photodissociation at λ=157 nm. Angew. Chem. Int. Ed. 2004, 43, 4791–4794.Google Scholar
  9. 9.
    Zubarev, R. A. Reactions of Polypeptide Ions with Electrons in the Gas Phase. Mass Spectrom. Rev. 2003, 22, 57–77.CrossRefGoogle Scholar
  10. 10.
    Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. Electron Capture Dissociation of Multiply Charged Protein Cations: A Nonergodic Process. J. Am. Chem. Soc. 1998, 120, 3265–3266.CrossRefGoogle Scholar
  11. 11.
    Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Peptide and Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectrometry. Proc. Nat. Acad. Sci. U.S.A. 2004, 101, 9528–9533.CrossRefGoogle Scholar
  12. 12.
    Coon, J. J.; Syka, J. E. P.; Schwartz, J. C.; Shabanowitz, J.; Hunt, D. F. Anion Dependence in the Partitioning between Proton and Electron Transfer in Ion/Ion Reactions. Int. J. Mass Spectrom. 2004, 236, 33–42CrossRefGoogle Scholar
  13. 13.
    Mann, M.; Jensen, O. N. Proteomic Analysis of Post-Translational Modifications. Nat. Biotechnol. 2003, 21, 255–261.CrossRefGoogle Scholar
  14. 14.
    Hunter, T. Signaling—2000 and Beyond. Cell 2000, 100, 113–127.CrossRefGoogle Scholar
  15. 15.
    Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The Protein Kinase Complement of the Human Genome. Science 2002, 298, 1912–1934.CrossRefGoogle Scholar
  16. 16.
    Marks, F. Protein Phosphorylation; VCH: Weinheim, 1996.CrossRefGoogle Scholar
  17. 17.
    Kehoe, J. W.; Bertozzi, C. R. Tyrosine Sulfation: A Modulator of Extracellular Protein—Protein Interactions. Chem. Biol. 2000, 7, R57-R61.CrossRefGoogle Scholar
  18. 18.
    Garcia, B. A.; Shabanowitz, J.; Hunt, D. F. Analysis of Protein Phosphorylation by Mass Spectrometry. Methods 2005, 35, 256–264.CrossRefGoogle Scholar
  19. 19.
    Carr, S. A.; Annan, R. S.; Huddleston, M. J. Mapping Posttranslational Modifications of Proteins by MS-Based Selective Detection: Application to Phosphoproteomics. Methods Enzymol. 2005, 405, 82–115.CrossRefGoogle Scholar
  20. 20.
    Nemeth-Cawley, J. F.; Karnik, S.; Rouse, J. C. Analysis of Sulfated Peptides Using Positive Electrospray Ionization Tandem Mass Spectrometry. J. Mass Spectrom. 2001, 36, 1301–1311.CrossRefGoogle Scholar
  21. 21.
    Wolfender, J. L.; Chu, F. X.; Ball, H.; Wolfender, F.; Fainzilber, M.; Baldwin, M. A.; Burlingame, A. L. Identification of Tyrosine Sulfation in Conus pennaceus Conotoxins α-PnIA and α-PnIB: Further Investigation of Labile Sulfo- and Phosphopeptides by Electrospray, Matrix-Assisted Laser Desorption/Ionization (MALDI), and Atmospheric Pressure MALDI Mass Spectrometry. J. Mass Spectrom. 1999, 34, 447–454.CrossRefGoogle Scholar
  22. 22.
    Medzihradszky, K. F.; Darula, Z.; Perlson, E.; Fainzilber, M.; Chalkley, R. J.; Ball, H.; Greenbaum, D.; Bogyo, M.; Tyson, D. R.; Bradshaw, R. A.; Burlingame, A. L. O-Sulfonation of Serine and Threonine—Mass Spectrometric Detection and Characterization of a New Post-Translational Modification in Diverse Proteins Throughout the Eukaryotes. Mol. Cell. Proteom. 2004, 3, 429–440.CrossRefGoogle Scholar
  23. 23.
    Huddleston, M. J.; Annan, R. S.; Bean, M. F.; Carr, S. A. Selective Detection of Phosphopeptides in Complex-Mixtures by Electrospray Liquid-Chromatography Mass-Spectrometry. J. Am. Soc. Mass Spectrom. 1993, 4, 710–717.CrossRefGoogle Scholar
  24. 24.
    Annan, R. S.; Huddleston, M. J.; Verma, R.; Deshaies, R. J.; Carr, S. A. A Multidimensional Electrospray MS-Based Approach to Phosphopeptide Mapping. Anal. Chem. 2001, 73, 393–404.CrossRefGoogle Scholar
  25. 25.
    Olsen, J. V.; Blagoev, B.; Gnad, F.; Macek, B.; Kumar, C.; Mortensen, P.; Mann, M. Global, in Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks. Cell 2006, 127, 635–648.CrossRefGoogle Scholar
  26. 26.
    Kinter, M.; Sherman, N. E. Protein Sequencing and Identification Using Tandem Mass Spectrometry; John Wiley: Chichester, 2000.CrossRefGoogle Scholar
  27. 27.
    Stensballe, A.; Jensen, O. N.; Olsen, J. V.; Haselmann, K. F.; Zubarev, R. A. Electron Capture Dissociation of Singly and Multiply Phosphorylated Peptides. Rapid Commun. Mass Spectrom. 2000, 14, 1793–1800.CrossRefGoogle Scholar
  28. 28.
    Shi, S. D. H.; Hemling, M. E.; Carr, S. A.; Horn, D. M.; Lindh, I.; McLafferty, F. W. Phosphopeptide/Phosphoprotein Mapping by Electron Capture Dissociation Mass Spectrometry. Anal. Chem. 2001, 73, 19–22.CrossRefGoogle Scholar
  29. 29.
    Coon, J. J.; Ueberheide, B.; Syka, J. E. P.; Dryhurst, D. D.; Ausio, J.; Shabanowitz, J.; Hunt, D. F. Protein Identification Using Sequential Ion/Ion Reactions and Tandem Mass Spectrometry. Proc. Nat. Acad. Sci. U.S.A. 2005, 102, 9463–9468.CrossRefGoogle Scholar
  30. 30.
    Gunawardena, H. P.; Emory, J. F.; McLuckey, S. A. Phosphopeptide Anion Characterization Via Sequential Charge Inversion and Electron- Transfer Dissociation. Anal. Chem. 2006, 78, 3788–3793.CrossRefGoogle Scholar
  31. 31.
    Medzihradszky, K. F.; Guan, S.; Maltby, D. A.; Burlingame, A. L. Sulfopeptide Fragmentation in Electron-Capture and Electron-Transfer Dissociation. J. Am. Soc. Mass Spectrom. 2007, 18, 1617–1624.CrossRefGoogle Scholar
  32. 32.
    Chen, H.; Eberlin, L. S.; Cooks, R. G. Neutral Fragment Mass Spectra via Ambient Thermal Dissociation of Peptide and Protein Ions. J. Am. Chem. Soc. 2007, 129, 5880–5886.CrossRefGoogle Scholar
  33. 33.
    Takats, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Electrosonic Spray Ionization: A Gentle Technique for Generating Folded Proteins and Protein Complexes in the Gas Phase and for Studying Ion-Molecule Reactions at Atmospheric Pressure. Anal. Chem. 2004, 76, 4050–4058.CrossRefGoogle Scholar
  34. 34.
    Wesdemiotis, C.; Mclafferty, F. W. Neutralization Reionization Mass-Spectrometry (NRMS). Chem. Rev. 1987, 87, 485–500.CrossRefGoogle Scholar
  35. 35.
    Schalley, C. A.; Hornung, G.; Schroder, D.; Schwarz, H. Mass Spectrometric Approaches to the Reactivity of Transient Neutrals. Chem. Soc. Rev. 1998, 27, 91–104.CrossRefGoogle Scholar
  36. 36.
    Tureček, F. Transient Intermediates of Chemical Reactions by Neutralization-Reionization Mass Spectrometry. Top. Curr. Chem. 2003, 225, 77–129.CrossRefGoogle Scholar
  37. 37.
    Bruins, A. P. Mass-Spectrometry with Ion Sources Operating at Atmospheric-Pressure. Mass Spectrom. Rev. 1991, 10, 53–77.CrossRefGoogle Scholar
  38. 38.
    Roepstorff, P.; Fohlman, J. Proposal for a Common Nomenclature for Sequence Ions in Mass-Spectra of Peptides. Biomed. Mass Spectrom. 1984, 11, 601–601.CrossRefGoogle Scholar
  39. 39.
    Flora, J. W.; Muddiman, D. C. Determination of the Relative Energies of Activation for the Dissociation of Aromatic versus Aliphatic Phosphopeptides by ESI-FTICR-MS and IRMPD. J. Am. Soc. Mass Spectrom. 2004, 15, 121–127.CrossRefGoogle Scholar
  40. 40.
    Gronert, S.; Li, K. H.; Horiuchi, M. Manipulating the Fragmentation Patterns of Phosphopeptides Via Gas-Phase Boron Derivatization: Determining Phosphorylation Sites in Peptides with Multiple Serines. J. Am. Soc. Mass Spectrom. 2005, 16, 1905–1914.CrossRefGoogle Scholar
  41. 41.
    Meotner, M.; Dongre, A. R.; Somogyi, A.; Wysocki, V. H. Thermal-Decomposition Kinetics of Protonated Peptides and Peptide Dimers, and Comparison with Surface-Induced Dissociation. Rapid Commun. Mass Spectrom. 1995, 9, 829–836.CrossRefGoogle Scholar
  42. 42.
    Butcher, D. J.; Asano, K. G.; Goeringer, D. E.; McLuckey, S. A. Thermal Dissociation of Gaseous Bradykinin Ions. J. Phys. Chem. A. 1999, 103, 8664–8671.CrossRefGoogle Scholar
  43. 43.
    Busman, M.; Rockwood, A. L.; Smith, R. D. Activation-Energies for Gas-Phase Dissociations of Multiply Charged Ions from Electrospray Ionization Mass-Spectrometry. J. Phys. Chem. 1992, 96, 2397–2400.CrossRefGoogle Scholar
  44. 44.
    McLuckey, S. A.; Goeringer, D. E. Slow Heating Methods in Tandem Mass Spectrometry. J. Mass Spectrom. 1997, 32, 461–474.CrossRefGoogle Scholar
  45. 45.
    Cristoni, S.; Bernardi, L. R.; Biunno, I.; Guidugli, F. Analysis of Peptides Using Partial (No Discharge) Atmospheric Pressure Chemical Ionization Conditions with Ion Trap Mass Spectrometry. Rapid Commun. Mass Spectrom. 2002, 16, 1686–1691.CrossRefGoogle Scholar
  46. 46.
    Louris, J. N.; Cooks, R. G.; Syka, J. E. P.; Kelley, P. E.; Stafford, G. C.; Todd, J. F. J. Instrumentation, Applications, and Energy Deposition in Quadrupole Ion-Trap Tandem Mass-Spectrometry. Anal. Chem. 1987, 59, 1677–1685.CrossRefGoogle Scholar
  47. 47.
    Harrison, A. G.; Young, A. B. Fragmentation Reactions of Deprotonated Peptides Containing Aspartic Acid. Int. J. Mass Spectrom. 2006, 255, 111–122.CrossRefGoogle Scholar
  48. 48.
    Han, H. L.; Xia, Y.; McLuckey, S. A. Ion Trap Collisional Activation of c and z· Ions Formed via Gas-Phase Ion/Ion Electron-Transfer Dissociation. J. Proteome Res. 2007, 6, 3062–3069.CrossRefGoogle Scholar
  49. 49.
    Mouls, L.; Subra, G.; Aubagnac, J. L.; Martinez, J.; Enjalbal, C. Tandem Mass Spectrometry of Amidated Peptides. J. Mass Spectrom. 2006, 41, 1470–1483.CrossRefGoogle Scholar
  50. 50.
    Bowie, J. H.; Brinkworth, C. S.; Dua, S. Collision-Induced Fragmentations of the (M − H) Parent Anions of Underivatized Peptides: An Aid to Structure Determination and Some Unusual Negative Ion Cleavages. Mass Spectrom. Rev. 2002, 21, 87–107.CrossRefGoogle Scholar
  51. 51.
    Boontheung, P.; Alewood, P. F.; Brinkworth, C. S.; Bowie, J. H.; Wabnitz, P. A.; Tyler, M. J. Negative Ion Electrospray Mass Spectra of Caerulein Peptides: An Aid to Structural Determination. Rapid Commun. Mass Spectrom. 2002, 16, 281–286.CrossRefGoogle Scholar
  52. 52.
    Chen, H. W.; Venter, A.; Cooks, R. G. Extractive Electrospray Ionization for Direct Analysis of Undiluted Urine, Milk, and Other Complex Mixtures without Sample Preparation. Chem. Commun. 2006, 2042–2044.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Lívia S. Eberlin
    • 2
  • Yu Xia
    • 2
  • Hao Chen
    • 1
  • R. Graham Cooks
    • 2
  1. 1.Center for Intelligent Chemical Instrumentation, Department of Chemistry and BiochemistryOhio UniversityAthensUSA
  2. 2.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations