Quantitative aspects of and ionization mechanisms in positive-ion atmospheric pressure chemical ionization mass spectrometry

  • Lisandra Cubero Herrera
  • J. Stuart Grossert
  • Louis Ramaley
Articles

Abstract

The behavior in atmospheric pressure chemical ionization of selected model polycyclic aromatic compounds, pyrene, dibenzothiophene, carbazole, and fluorenone, was studied in the solvents acetonitrile, methanol, and toluene. Relative ionization efficiency and sensitivity were highest in toluene and lowest in methanol, a mixture of molecular ions and protonated molecules was observed in most instances, and interferences between analytes were detected at higher concentrations. Such interferences were assumed to be caused by a competition among analyte molecules for a limited number of reagent ions in the plasma. The presence of both molecular ions and protonated analyte molecules can be attributed to charge-transfer from solvent radical cations and proton transfer from protonated solvent molecules, respectively. The order of ionization efficiency could be explained by incorporating the effect of solvation in the ionization reactions. Thermodynamic data, both experimental and calculated theoretically, are presented to support the proposed ionization mechanisms. The analytical implications of the results are that using acetonitrile (compared with methanol) as solvent will provide better sensitivity with fewer interferences (at low concentrations), except for analytes having high gas-phase basicities.

References

  1. 1.
    Marr, L. C.; Kirchstetter, T. W.; Harley, R. A.; Miguel, A. H.; Hering, S. V.; Hammond, S. K. Characterization of Polycyclic Aromatic Hydrocarbons in Motor Vehicle Fuels and Exhaust Emissions. Environ. Sci. Technol. 1999, 33, 3091–3099.CrossRefGoogle Scholar
  2. 2.
    Dimashki, M.; Harrad, S.; Harrison, R. M. Measurements of Nitro-PAH in the Atmospheres of Two Cities. Atmos. Environ. 2000, 34, 2459–2469.CrossRefGoogle Scholar
  3. 3.
    Kropp, K. G.; Fedorak, P. M. A Review of the Occurrence, Toxicity, and Biodegradation of Condensed Thiophenes Found in Petroleum. Can. J. Microbiol. 1998, 44, 605–622.CrossRefGoogle Scholar
  4. 4.
    Mendez, A.; Bruzual, J. Molecular Characterization of Petroleum and Its Fractions by Mass Spectrometry. Analytical Advances for Hydrocarbon Research, Chap. 4, Hsu, C. S., Ed.; Kluwer Academic/Plenum Publishers: New York, NY, 2003, pp 81–87.Google Scholar
  5. 5.
    Vo-Dinh, T. Chemical Analysis of Polycyclic Aromatic Compounds, Chap. 3. John Wiley, Inc: New York, NY, 1989, pp 59–73.Google Scholar
  6. 6.
    Thomson, B. A. Atmospheric Pressure Ionization and Liquid Chromatography/Mass Spectrometry—Together at Last. J. Am. Soc. Mass Spectrom. 1998, 9, 187–193.CrossRefGoogle Scholar
  7. 7.
    Roussis, S. G.; Proulx, R. Molecular Weight Distributions of Heavy Aromatic Petroleum Fractions by Ag+ Electrospray Ionization Mass Spectrometry. Anal. Chem. 2002, 74, 1408–1414.CrossRefGoogle Scholar
  8. 8.
    Kolakowski, B. M.; Grossert, J. S.; Ramaley, L. The Importance of Both Charge Exchange and Proton Transfer in the Analysis of Polycyclic Aromatic Compounds using Atmospheric Pressure Chemical Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 301–310.CrossRefGoogle Scholar
  9. 9.
    Hanold, K. A.; Fischer, S. M.; Cormia, P. H.; Miller, C. E.; Syage, J. A. Atmospheric Pressure Photoionization: 1. General Properties for LC/MS. Anal. Chem. 2004, 76, 2842–2851.CrossRefGoogle Scholar
  10. 10.
    Anacleto, J. F.; Ramaley, L.; Benoit, F. M.; Boyd, R. K.; Quilliam, M. A. Comparison of Liquid Chromatography/Mass Spectrometry Interfaces for the Analysis of Polycyclic Aromatic Hydrocarbons. Anal. Chem. 1995, 67, 4145–4154.CrossRefGoogle Scholar
  11. 11.
    Hayen, H.; Jachmann, N.; Vogel, M.; Karst, U. LC Electron Capture APCI-MS for the Determination of Nitroaromatic Compounds. Analyst 2002, 127, 1027–1030.CrossRefGoogle Scholar
  12. 12.
    Roussis, S. G.; Fedora, J. W. Quantitative Determination of Polar and Ionic Compounds in Petroleum Fractions by Atmospheric Pressure Chemical Ionization and Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2002, 16, 1295–1303.CrossRefGoogle Scholar
  13. 13.
    Cody, R. B.; Laramée, J. A.; Durst, H. D. Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. Anal. Chem. 2005, 77, 2297–2303.CrossRefGoogle Scholar
  14. 14.
    McEwen, C. N.; McKay, R. G.; Larsen, B. S. Analysis of Solids, Liquids, and Biological Tissues Using Solids Probe Introduction at Atmospheric Pressure on Commercial LC/MS Instruments. Anal. Chem. 2005, 77, 7826–7831.CrossRefGoogle Scholar
  15. 15.
    Ratcliffe, L. V.; Rutten, F. J. M.; Barrett, D. A.; Whitmore, T.; Seymour, D.; Greenwood, C.; Aranda-Gonzalvo, Y.; Robinson, S.; McCoustra, M. Surface Analysis under Ambient Conditions Using Plasma-Assisted Desorption/Ionization Mass Spectrometry. Anal. Chem. 2007, 79, 6094–6101.CrossRefGoogle Scholar
  16. 16.
    Syage, J. A. Mechanism of [M + H]+ Formation in Photoionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 1521–1533.CrossRefGoogle Scholar
  17. 17.
    Short, L. C.; Cai, S. -S.; Syage, J. A. APPI-MS: Effects of Mobile Phases and VUV Lamps on the Detection of PAH Compounds. J. Am. Soc. Mass Spectrom. 2007, 18, 589–599.CrossRefGoogle Scholar
  18. 18.
    Kolakowski, B. M.; Grossert, J. S.; Ramaley, L. Studies on the Positive-Ion Mass Spectra from Atmospheric Pressure Chemical Ionization of Gases and Solvents used in Liquid Chromatography and Direct Liquid Injection. J. Am. Soc. Mass Spectrom. 2004, 15, 311–324.CrossRefGoogle Scholar
  19. 19.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian-03, Gaussian Inc., Pittsburgh PA, 2003.Google Scholar
  20. 20.
    Becke, A. D. A New Mixing of Hartree-Fock and Local Density-Functional Theory. J. Chem. Phys. 1993, 98, 1372–1377.CrossRefGoogle Scholar
  21. 21.
    Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. 1988, B37, 785–789.Google Scholar
  22. 22.
    Malavé Osuna, R.; Ponce Ortiz, R.; Okamoto, T.; Suzuki, Y.; Yamaguchi, S.; Hernández, V.; López Navarrete, J. T. Thiophene- and Selenophene-Based Heteroacenes: Combined Quantum Chemical DFT and Spectroscopic Raman and UV-Vis-NIR Study. J. Phys. Chem. B. 2007, 111, 7488–7496.CrossRefGoogle Scholar
  23. 23.
    Hwang, S.; Chung, D. S. Calculation of the Solvation Free Energy of the Proton in Methanol. Bull Korean Chem. Soc. 2005, 26, 589–593.CrossRefGoogle Scholar
  24. 24.
    Suzuki, A.; Kinoshita, T.; Takeuchi, K.; Wakisaka, A.; Yoshizawa, K. Theoretical Study on the Structure and Stability of the Clusters of Tropylium Ion Solvated by Methanol Molecules. J. Mol. Struct. (Theochem). 2001, 574, 117–125.CrossRefGoogle Scholar
  25. 25.
    Mata, R. A.; Costa Cabral, B. J. Structural, Energetic, and Electronic Properties of (CH3CN)2−8 Clusters by Density Functional Theory. J. Mol. Struct. (Theochem). 2004, 673, 155–164.CrossRefGoogle Scholar
  26. 26.
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  27. 27.
    Scott, A. P.; Radom, L. Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Møller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem. 1996, 100, 16502–16513.CrossRefGoogle Scholar
  28. 28.
    Lias, S. G. Ionization Energy Evaluation and Lias, S. G.; Levin, R. D.; Kafafi, S. A.; Rosenstock, H. M.; Draxl, K.; Steiner, B. W.; Herron, J. T., Ion Energetics Data. Number 69, Linstrom, P. J.; Mallard, W. G., Eds.; In NIST Chemistry WebBook, NIST Standard Reference Database National Institute of Standards and Technology: Gaithersburg MD, 2005; http://webbook.nist.gov.Google Scholar
  29. 29.
    Hunter, E. P.; Lias, S. G. J. Proton Affinity Evaluation. Number 69, Linstrom, P. J.; Mallard, W. G., Eds.; In NIST Chemistry WebBook, NIST Standard Reference Database National Institute of Standards and Technology; Gaithersburg MD, 2005; http://webbook.nist.gov.Google Scholar
  30. 30.
    Harrison, A. G. Chemical Ionization Mass Spectrometry 2nd ed.; CRC Press: Boca Raton, FL, 1992; Chap. 2, p 13.Google Scholar
  31. 31.
    Luo, Y. R. Handbook of Bond Dissociation Energies in Organic Compounds, CRC Press: Boca Raton, FL, 2003; pp 30, 31, 57, 76.Google Scholar
  32. 32.
    Horning, E. C.; Horning, M. G.; Carroll, D. I.; Stillwell, R. N. New Picogram Detection System Based on a Mass Spectrometer with an External Ionization Source at Atmospheric Pressure. Anal. Chem. 1973, 45, 936–943.CrossRefGoogle Scholar
  33. 33.
    Dzidic, I.; Carroll, D. I.; Stillwell, R. N.; Horning, E. C. Comparison of Positive Ions Formed in Nickel-63 and Corona Discharge Ion Sources Using Nitrogen, Argon, Isobutene, Ammonia, and Nitric Oxide as Reagents in Atmospheric Pressure Ionization Mass Spectrometry. Anal. Chem. 1976, 48, 1763–1768.CrossRefGoogle Scholar
  34. 34.
    Sunner, J.; Nicol, G.; Kebarle, P. Factors Determining Relative Sensitivity of Analytes in Positive Mode Atmospheric Pressure Ionization Mass Spectrometry. Anal. Chem. 1988, 60, 1300–1307.CrossRefGoogle Scholar
  35. 35.
    Carroll, D. I.; Dzidic, I.; Stillwell, R. N.; Haegele, K. D.; Horning, E. C. Atmospheric Pressure Ionization Mass Spectrometry: Corona Discharge Ion Source for Use in Liquid Chromatography-Mass Spectrometry-Computer Analytical System. Anal. Chem. 1975, 47, 2369–2373.CrossRefGoogle Scholar
  36. 36.
    Harrison, A. G. Chemical Ionization Mass Spectrometry 2nd ed.. CRC Press: Boca Raton, FL, 1992; Chap. 2, 15–18.Google Scholar
  37. 37.
    Sunner, J.; Michael, G. I.; Kebarle, P. Sensitivity Enhancements Obtained at High Temperatures in Atmospheric Pressure Ionization Mass Spectrometry. Anal. Chem. 1988, 60, 1308–1313.CrossRefGoogle Scholar
  38. 38.
    Meot-Ner (Mautner), M. Solvation of the Proton by HCN and CH3CN: Condensation of HCN with Ions in the Gas Phase. J. Am. Chem. Soc. 1978, 100, 4694–4699.CrossRefGoogle Scholar
  39. 39.
    Kebarle, P.; Grimsrud, E. P. Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether, and Water: Effect of Hydrogen Bonding. J. Am. Chem. Soc. 1973, 95, 7939–7943.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Lisandra Cubero Herrera
    • 1
  • J. Stuart Grossert
    • 1
  • Louis Ramaley
    • 1
  1. 1.Trace Analysis Research Centre, Department of ChemistryDalhousie UniversityHalifaxCanada
  2. 2.Institute for Marine BiosciencesNational Research Council of CanadaHalifaxCanada

Personalised recommendations