Determination of gas-phase acidities of dimethylphenols: Combined experimental and theoretical study

  • Paulo J. Amorim Madeira
  • Paulo Jorge Costa
  • Maria Tereza Fernandez
  • José A. Martinho Simões
  • João Paulo Leal


The gas-phase acidities of the six dimethylphenol isomers were determined experimentally, by using the kinetic method, and theoretically, through quantum chemistry calculations. The experimental values, relative to the gas-phase acidity of phenol, are (in kJ mol−1): −1.76 ± 0.76 (2,3-Me2C6H3OH), 1.78 ± 0.29 (2,4-Me2C6H3OH), 0.83 ± 0.58 (2,5-Me2C6H3OH), −4.39 ± 0.89 (2,6-Me2C6H3OH), 5.38 ± 1.08 (3,4-Me2C6H3OH), and 1.88 ± 0.08 (3,5-Me2C6H3OH). This trend was discussed by considering the substituent effects on the thermodynamic stabilities both of the parent phenols and the corresponding phenoxide ions. The above acidity data, the literature values for 2-, 3-, and 4-methylphenol, and the substituent effects analysis allowed to develop a simple empirical method to estimate the acidity of any methyl-substituted phenol.


  1. 1.
    Santos, R. M. B.; Martinho Simões, J. A. Energetics of the O-H Bond in Phenol and Substituted Phenols: A Critical Evaluation of Literature Data. J. Phys. Chem. Ref. Data 1998, 27, 707–739.CrossRefGoogle Scholar
  2. 2.
    Jovanovic, S. V.; Steenken, S.; Simic, M. G.; Hara, Y. Antioxidant Properties of Flavonoids: Reduction Potentials and Electron Transfer Reactions of Flavonoid Radicals. In Flavonoids in Health and Disease, Rice-Evans, C. A.; Packer, L., Eds.; Marcel Dekker: New York, 1998; pp. 137.Google Scholar
  3. 3.
    Halliwell, B.; Gutteridge, J. M. C. Free Radicals in Biology and Medicine; Oxford University Press: Oxford, 1999, and references therein.Google Scholar
  4. 4.
    Wright, J. S.; Johnson, E. R.; DiLabio, G. A. Predicting the Activity of Phenolic Antioxidants: Theoretical Method, Analysis of Substituent Effects, and Application to Major Families of Antioxidants. J. Am. Chem. Soc. 2001, 123, 1173–1183, and references therein.CrossRefGoogle Scholar
  5. 5.
    Klein, E.; Lukeš, V. DFT/B3LYP Study of the Substituent Effect on the Reaction Enthalpies of the Individual Steps of Sequential Proton Loss Electron Transfer Mechanism of Phenols Antioxidant Action: Correlation with Phenolic C-O Bond Length. J. Mol. Struct. Theochem. 2007, 805, 153–160, and references therein.CrossRefGoogle Scholar
  6. 6.
    Musialik, M.; Litwinienko, G. Scavenging of DPPH Center Dot Radicals by Vitamin E is Accelerated by Its Partial Ionization: The Role of Sequential Proton Loss Electron Transfer. Org. Lett. 2005, 7, 4951–4954.CrossRefGoogle Scholar
  7. 7.
    Ervin, K. M. Experimental Techniques in Gas-Phase Ion Thermochemistry. Chem. Rev. 2001, 101, 391–444.CrossRefGoogle Scholar
  8. 8.
    Cooks, R. G.; Wong, P. S. H. Kinetic Method of Making Thermochemical Determinations: Advances and Applications. Acc. Chem. Res. 1998, 31, 379–386.CrossRefGoogle Scholar
  9. 9.
    Harrison, A. G. The Gas-Phase Basicities and Proton Affinities of Amino Acids and Peptides. Mass Spectrom. Rev. 1997, 16, 201–217.CrossRefGoogle Scholar
  10. 10.
    Silva, M. R.; Matos, M. A.; Miranda, M.; Sousa, M. H.; Santos, R. M. B.; Martinho Simões, J. A. Standard Enthalpies of Formation of 2,6-di-tert-Butyl-4-Methylphenol and 3,5-di-tert-Butylphenol and Their Phenoxy Radicals. Struct. Chem. 2001, 12, 171–181.CrossRefGoogle Scholar
  11. 11.
    McMahon, T. B.; Kebarle, P. Intrinsic Acidities of Substituted Phenols and Benzoic Acids Determined by Gas-Phase Proton-Transfer Equilibria. J. Am. Chem. Soc. 1977, 99, 2222–2230.CrossRefGoogle Scholar
  12. 12.
    Fujio, M.; McIver, R. T.; Taft, R. W. Effects on the Acidities of Phenols from Specific Substituent-Solvent Interactions—Inherent Substituent Parameters from Gas-Phase Acidities. J. Am. Chem. Soc. 1981, 103, 4017–4029.CrossRefGoogle Scholar
  13. 13.
    Matos, M. A. R.; Miranda, M. S.; Morais, V. M. F. Thermochemical Study of the Methoxy- and Dimethoxyphenol Isomers. J. Chem. Eng. Data 2003, 48, 669–679.CrossRefGoogle Scholar
  14. 14.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian03; Gaussian Inc.: Wallingford, CT, 2004.Google Scholar
  15. 15.
    Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-energy formula into a functional of the electron-density. Phys. Rev. B 1988, 37, 785–789.CrossRefGoogle Scholar
  16. 16.
    Becke, A. D. Density-Functional Thermochemistry. 3: The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652.CrossRefGoogle Scholar
  17. 17.
    Angel, L. A.; Ervin, K. M. Competitive Threshold Collision-Induced Dissociation: Gas-Phase Acidity and O-H Bond Dissociation Enthalpy of Phenol. J. Phys. Chem. A 2004, 108, 8346–8352.CrossRefGoogle Scholar
  18. 18.
    Linstrom, P. J.; Mallard, W. G. Eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005, National Institute of Standards and Technology, Gaithersburg MD ( Scholar
  19. 19.
    Richard, L. S.; Bernardes, C. E. S.; Diogo, H. P.; Leal, J. P.; Minas da Piedade, M. E. Energetics of Cresols and of Methylphenoxyl Radicals. J. Phys. Chem. A 2007, 111, 8741–8748.CrossRefGoogle Scholar
  20. 20.
    Johnson, C. D. The Hammett Equation; Cambridge University Press, Cambridge, 1980.Google Scholar
  21. 21.
    Pedley, J. B. Thermochemical Data and Structures of Organic Compounds; Thermodynamics Research Center Data Series, Vol I; Thermodynamics Research Center: College Station, 1994.Google Scholar
  22. 22.
    Angel, L. A.; Ervin, K. M. Gas-Phase Acidities and O-H Bond Dissociation Enthalpies of Phenol, 3-Methylphenol, 2,4,6-Trimethylphenol, and Ethanoic Acid. J. Phys. Chem. A 2006, 110, 10392–10403.CrossRefGoogle Scholar
  23. 23.
    Larsen, N. W. Microwave Spectra of the 6 Mono-c-13-Substituted Phenols and of Some Mono-Deuterated Species of Phenol—Complete Substitution Structure and Absolute Dipole Moment. J. Mol. Struct. 1979, 51, 175–190.CrossRefGoogle Scholar
  24. 24.
    Goddard, R.; Herzog, H. M.; Reetz, M. T. Cation-Anion CH… O-Interactions in the Metal-Free Phenolate, Tetra-n-Butylammonium Phenol-Phenolate. Tetrahedron 2002, 58, 7847–7850.CrossRefGoogle Scholar
  25. 25.
    Sieler, J.; Pink, M.; Zahn, G. The Structures of Two Hydrates of Sodium Phenoxide—C6H5ONa·H2O and C6H5ONa·3H2O. Z. Anorg. Allg. Chem. 1994, 620, 743–748.CrossRefGoogle Scholar
  26. 26.
    Suter, H. U.; Nonella, M. A. Quantum Chemical Investigation of the C-O Bond Length and Stretching Mode of the Phenolate Anion. J. Phys. Chem. A 1998, 102, 10128–10133.CrossRefGoogle Scholar
  27. 27.
    Wright, J. S.; Carpenter, D. J.; McKay, D. J.; Ingold, K. U. Theoretical Calculation of Substituent Effects on the O-H Bond Strength of Phenolic Antioxidants Related to Vitamin E. J. Am. Chem. Soc. 1997, 119, 4245–4252.CrossRefGoogle Scholar
  28. 28.
    Klein, E.; Lukeš, V. DFT/B3LYP Study of O-H Bond Dissociation Enthalpies of Para- and Meta-Substituted Phenols: Correlation with the Phenolic C-O Bond Length. J. Mol. Struct. Theochem. 2006, 767, 43–50.CrossRefGoogle Scholar
  29. 29.
    Bakalbassis, E. G.; Lithoxoidou, A. T.; Vafiadis, A. P. Theoretical Calculation of Accurate Absolute and Relative Gas- and Liquid-Phase O-H Bond Dissociation Enthalpies of 2-Mono- and 2,6-Disubstituted Phenols, Using DFT/B3LYP. J. Phys. Chem. A 2003, 107, 8594–8606.CrossRefGoogle Scholar
  30. 30.
    Nwobi, O.; Higgins, J.; Zhou, X.; Liu, R. Density Functional Calculation of Phenoxyl Radical and Phenolate Anion: An Examination of the Performance of DFT Methods. Chem. Phys. Lett. 1997, 272, 155–161.CrossRefGoogle Scholar
  31. 31.
    Neuman, A.; Gillier-Pandraud, H. Crystalline Structures of 2,3-Dimethylphenol and 2,5-Dimethylphenol at 150 °C. Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. 1973, 29, 1017–1023.CrossRefGoogle Scholar
  32. 32.
    Antona, D.; Longchambon, F.; Vandenborre, M. T.; Becker, P. Structure of Dimethyl-2,6 Phenol. Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. 1973, 29, 1372–1376.CrossRefGoogle Scholar
  33. 33.
    Vandenborre, M. T.; Gillier-Pandraud, H.; Antona, D.; Becker, P. Structure of 3,4-dimethylphenol at −130 °C. Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. 1973, 29, 2488–2492.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Paulo J. Amorim Madeira
    • 1
  • Paulo Jorge Costa
    • 1
  • Maria Tereza Fernandez
    • 1
  • José A. Martinho Simões
    • 1
    • 2
  • João Paulo Leal
    • 1
    • 3
  1. 1.Centro de Química e Bioquímica, Faculdade CiênciasUniversidade de LisboaLisboaPortugal
  2. 2.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
  3. 3.Departamento de QuímicaInstituto Tecnológico e NuclearSacavémPortugal

Personalised recommendations