Hand-portable gas chromatograph-toroidal ion trap mass spectrometer (GC-TMS) for detection of hazardous compounds

  • Jesse A. Contreras
  • Jacolin A. Murray
  • Samuel E. Tolley
  • Joseph L. Oliphant
  • H. Dennis Tolley
  • Stephen A. Lammert
  • Edgar D. Lee
  • Douglas W. Later
  • Milton L. Lee
Focus: Harsh Environment Mass Spectrometry


A novel gas chromatograph-mass spectrometer (GC-MS) based on a miniature toroidal ion trap mass analyzer (TMS) and a low thermal mass GC is described. The TMS system has an effective mass/charge (m/z) range of 50–442 with mass resolution at full-width half-maximum (FWHM) of 0.55 at m/z 91 and 0.80 at m/z 222. A solid-phase microextraction (SPME) fiber mounted in a simple syringe-style holder is used for sample collection and introduction into a specially designed low thermal mass GC injection port. This portable GC-TMS system weighs <13 kg (28 lb), including batteries and helium carrier gas cartridge, and is totally self-contained within dimensions of 47×36×18 cm (18.5×14×7in.). System start-up takes about 3 min and sample analysis with library matching typically takes about 5 min, including time for column cool-down. Peak power consumption during sample analysis is about 80 W. Battery power and helium supply cartridges allow 50 and 100 consecutive analyses, respectively. Both can be easily replaced. An on-board library of target analytes is used to provide detection and identification of chemical compounds based on their characteristic retention times and mass spectra. The GC-TMS can detect 200 pg of methyl salicylate on-column. n-Butylbenzene and naphthalene can be detected at a concentration of 100 ppt in water from solid-phase microextraction (SPME) analysis of the headspace. The GC-TMS system has been designed to easily make measurements in a variety of complex and harsh environments.


SPME Methyl Salicylate Chemical Warfare Agent Diethylphthalate Field Anal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Herbert, H.; Hill, J.; Martin, S. J. Conventional Analytical Methods for Chemical Warfare Agents. Pure Appl. Chem. 2002, 74, 2281–2291.Google Scholar
  2. 2.
    Iceman, G. A.; Stone, J. A. Ion Mobility Spectrometers in National Defense. Anal. Chem. 2004, 76, 391A-397A.Google Scholar
  3. 3.
    Seto, Y.; Kanamori-Kataoka, M.; Tsuge, K.; Ohsawa, I.; Matsushita, K.; Sekiguchi, H.; Itoi, T.; Iura, K.; Sano, Y.; Yamashiro, S. Sensing Technology for Chemical-Warfare Agents and Its Evaluation Using Authentic Agents. Sens. Actuators B 2005, 108, 193–197.CrossRefGoogle Scholar
  4. 4.
    Steiner, W. E.; Klopsch, S. J.; English, W. A.; Clowers, B. H.; Hill, H. H. Detection of a Chemical Warfare Agent Simulant in Various Aerosol Matrixes by Ion Mobility Time-of-Flight Mass Spectrometry. Anal. Chem. 2005, 77, 4792–4799.CrossRefGoogle Scholar
  5. 5.
    Smith, W. D. Analytical Chemistry at the Forefront of Homeland Defense. Anal. Chem. 2002, 74, 462A-466A.Google Scholar
  6. 6.
    Arnold, N. S.; Dworzanski, J. P.; Sheya, S. A.; McCleannen, W. H.; Meuzelaar, H. L. C. Design Considerations in Field-Portable GC-Based Hyphenated Instrumentation. Field Anal. Chem. Tech. 2000, 4, 219–238.CrossRefGoogle Scholar
  7. 7.
    Makas, A. L.; Troshkov, M. L. Field Gas Chromatography-Mass Spectrometry for Fast Analysis. J. Chromatogr. B 2004, 800, 55–61.CrossRefGoogle Scholar
  8. 8.
    Eckenrode, B. A. Environmental and Forensic Applications of Field-Portable GC-MS: An Overview. J. Am. Soc. Mass Spectrom. 2001, 12, 683–693.CrossRefGoogle Scholar
  9. 9.
    Smith, P. A.; Lepage, C. R. J.; Koch, D.; Wyatt, H. D. M.; Hook, G. L.; Betsinger, G.; Erickson, R. P.; Eckenrode, B. A. Detection of Gas-Phase Chemical Warfare Agents Using Field-Portable Gas Chromatography-Mass Spectrometry Systems: Instrument and Sampling Strategy Considerations. Trends Anal. Chem. 2004, 23, 296–306.CrossRefGoogle Scholar
  10. 10.
    Mustacich, R.; Everson, J.; Richards, J. Fast GC: Thinking Outside the Box. Am. Lab. 2003, 27, 38–41.Google Scholar
  11. 11.
    Sloan, K. M.; Mustacich, R. V.; Eckenrode, B. A. Development and Evaluation of a Low Thermal Mass Fast Chromatograph for Rapid Forensic GC-MS Analyses. Field Anal. Chem. Tech. 2001, 5, 288–301.CrossRefGoogle Scholar
  12. 12.
    Lambertus, G.; Sensenig, K.; Potkay, J.; Agah, M.; Scheuering, S.; Dorman, K. W. F.; Sacks, R. Design, Fabrication, and Evaluation of Microfabricated Columns for Gas Chromatography. Anal. Chem. 2004, 76, 2629–2637.CrossRefGoogle Scholar
  13. 13.
    Zampolli, S.; Elmi, I.; Sturmann, J.; Nicoletti, S.; Dori, L.; Cardinali, G. C. Selectivity Enhancement of Metal Oxide Gas Sensors Using a Micromachined Gas Chromatographic Column. Sens. Actuators B 2005, 105, 400–406.CrossRefGoogle Scholar
  14. 14.
    Overton, E. B.; Carney, K. R.; Roques, N.; Dharmasena, H. P. Fast GC Instrumentation and Analysis for Field Applications. Field. Anal. Chem. Tech. 2001, 5, 97–105.CrossRefGoogle Scholar
  15. 15.
    Syage, J. A.; Hanning-Lee, M. A.; Hanold, K. A. A Man Portable, Photoionization Time-of-Flight Mass Spectrometer. Field Anal. Chem. Tech. 2000, 4, 204–215.CrossRefGoogle Scholar
  16. 16.
    Syage, J. A.; Nies, B. J.; Evans, M. D.; Hanold, K. A. Field-Portable, High-Speed GC/TOFMS. J. Am. Soc. Mass Spectrom. 2001, 12, 648–655.CrossRefGoogle Scholar
  17. 17.
    Diaz, J. A.; Daley, P.; Miles, R.; Rohrs, H.; Polla, D. Integration Test of a Miniature ExB Mass Spectrometer with a Gas Chromatograph for Development of a Low-Cost, Portable, Chemical-Detection System. Trends Anal. Chem. 2004, 23, 314–321.CrossRefGoogle Scholar
  18. 18.
    Microsaic Systems. Scholar
  19. 19.
    Diaz, J. A.; Giese, C. F.; Gentry, W. R. Portable Double-Focusing Mass-Spectrometer System for Field Gas Monitoring. Field Anal. Chem. Tech. 2001, 5, 155–167.CrossRefGoogle Scholar
  20. 20.
    Rimkus, W. V.; Davis, D. V.; Gallaher, K. Transportable Miniature FTMS for Analysis of Corrosives and Chemical Warfare Agents. In Proceedings of the 4th Workshop on Harsh-Environment MS St. Petersburg Beach, FL.Google Scholar
  21. 21.
    Patterson, G. E.; Guymon, A. J.; Riter, L. S.; Everly, M.; Griep-Raming, J.; Laughlin, B. C.; Ouyang, Z.; Cooks, R. G. Miniature Cylindrical Ion Traps Mass Spectrometer. Anal. Chem. 2002, 74, 6145–6153.CrossRefGoogle Scholar
  22. 22.
    Blain, M. G.; Riter, L. S.; Cruz, D.; Austin, D. E.; Wu, G.; Plass, W. R.; Cooks, R. G. Towards the Hand-Held Mass Spectrometer: Design Considerations, Simulation, and Fabrication of Micrometer-Scaled Cylindrical Ion Traps. Int. J. Mass Spectrom. 2004, 236, 91–104.CrossRefGoogle Scholar
  23. 23.
    Riter, L. S.; Peng, Y.; Noll, R. J.; Patterson, G. E.; Aggerholm, T.; Cooks, R. G. Analytical Performance of a Miniature Cylindrical Ion Trap Mass Spectrometer. Anal. Chem. 2002, 74, 6154–6162.CrossRefGoogle Scholar
  24. 24.
    Gao, L.; Song, Q.; Patterson, G. E.; Cooks, R. G.; Ouyang, Z. Handheld Rectilinear Ion Trap Mass Spectrometer. Anal. Chem. 2006, 78, 5994–6002.CrossRefGoogle Scholar
  25. 25.
    Ouyang, Z.; Wu, G.; Song, Y.; Li, H.; Plass, W. R.; Cooks, R. G. Rectilinear Ion Trap: Concepts, Calculations, and Analytical Performance of a New Mass Analyzer. Anal. Chem. 2004, 76, 4595–4605.CrossRefGoogle Scholar
  26. 26.
    Fico, M.; Yu, M.; Ouyang, Z.; Cooks, R. G.; Chappell, W. J. Miniaturization and Geometry Optimization of a Polymer-Based Rectilinear Ion Trap. Anal. Chem. 2007, 79, 8076–8082.CrossRefGoogle Scholar
  27. 27.
    Lammert, S. A.; Rockwood, A. A.; Wang, M.; Lee, M.; Lee, E. D.; Tolley, S. E.; Oliphant, J. R.; Jones, J. L.; Waite, R. W. Miniature Toroidal Radio Frequency Ion Trap Mass Analyzer. J. Am. Soc. Mass Spectrom. 2006, 17, 916–922.CrossRefGoogle Scholar
  28. 28.
    Austin, D. E.; Wang, M.; Tolley, S. E.; Maas, J. D.; Hawkins, A. R.; Rockwood, A. L.; Tolley, H. D.; Lee, E. D.; Lee, M. L. Halo Ion Trap Mass Spectrometer. Anal. Chem. 2007, 79, 2927–2932.CrossRefGoogle Scholar
  29. 29.
    Keil, A.; Hernandez-Soto, H.; Noll, R. J.; Fico, M.; Gao, L.; Ouyang, Z.; Cooks, R. G. Monitoring of Toxic Compounds in Air Using a Handheld Rectilinear Ion Trap Mass Spectrometer. Anal. Chem. 2008, 80, 734–741.CrossRefGoogle Scholar
  30. 30.
    Meuzelaar, H. L. C.; Dworzanski, J. P.; Arnold, N. S.; McCleannen, W. H. Advances in Field-Portable Mobile GC/MS Instrumentation. Field Anal. Chem. Tech. 2000, 4, 3–13.CrossRefGoogle Scholar
  31. 31.
    Torion Technologies, Guardion-7 Hand-portable GC-TMS System. http://www.torion.net Scholar
  32. 32.
    Griffin Analytical. Scholar
  33. 33.
    Daltronics, B: Enhanced Environmental Mass Spectrometer (E2M) Scholar
  34. 34.
    Eckenrode, B. A. The Application of an Integrated Multifunctional Field-Portable GC/MS System. Field Anal. Chem. Tech. 1998, 2, 3–20.CrossRefGoogle Scholar
  35. 35.
    Gao, L.; Harper, J.; Cooks, R. G.; Ouyang, Z. Mini 11 Handheld Mass Spectrometer and Its Applications in Biomedical Areas. In Proceedings of the 59th Annual Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, New Orleans, LA, March 1–6, 2008.Google Scholar
  36. 36.
    Inficon HAPSITE Smart Identification System. Scholar
  37. 37.
    Smith, P. A.; Sng, M. T.; Eckenrode, B. A.; Leow, S. Y.; Koch, D.; Erickson, R. P.; Lepage, C. R. J.; Hook, G. L. Towards Smaller and Faster Gas Chromatography-Mass Spectrometry Systems for Field Chemical Detection. J. Chromatogr. A. 2005, 1067, 285–294.CrossRefGoogle Scholar
  38. 38.
    Bier, M. E.; Cooks, R. G. Membrane Interface for Selective Introduction of Volatile Compounds Directly into the Ionization Chamber of a Mass Spectrometer. Anal. Chem. 1987, 59, 597–601.CrossRefGoogle Scholar
  39. 39.
    Lammert, S. A.; Plass, W. R.; Thompson, C. V.; Wise, M. B. Design, Optimization and Initial Performance of a Toroidal rf Ion Trap Mass Spectrometer. Int. J. Mass Spectrom. 2001, 212, 25–40.CrossRefGoogle Scholar
  40. 40.
    MacDonald, S. J.; Wheeler, D. Fast Temperature Programming by Resistive Heating with Conventional GCs. Am. Lab. 1998, 30, 27–28, 37–38, 40.Google Scholar
  41. 41.
    Jain, V.; Phillips, J. B. Fast Temperature Programming on Fused-Silica Open Tubular Capillary Columns by Direct Resistive Heating. J. Chromatogr. Sci. 1995, 33, 55–59.CrossRefGoogle Scholar
  42. 42.
    Stearns, S. D.; Cai, H.; Koehn, J. A.; Brisbin, M.; Cowles, C.; Bishop, C. Direct Resistively Heated Columns for Fast and Portable Gas Chromatography. In Proceedings of the 59th Annual Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, New Orleans, LA, March 1–6, 2008.Google Scholar
  43. 43.
    Zhang, Z.; Yang, M. J.; Pawliszyn, J. Solid Phase Microextraction. Anal. Chem. 1994, 66, 844A-853A.CrossRefGoogle Scholar
  44. 44.
    Alpendurada, M. d. F. Solid-Phase Microextraction: A Promising Technique for Sample Preparation in Environmental Analysis. J. Chromatogr. A 2000, 889, 3–14.CrossRefGoogle Scholar
  45. 45.
    Pawliszyn, J. Application of Solid Phase Microextraction Royal Society of Chemistry: Letchworth, Hertfordshire, UK, 1999, p 655.CrossRefGoogle Scholar
  46. 46.
    Smith, P. A.; Sheely, M. V.; Kluchinsky, T. A. J. Solid Phase Microextraction with Analysis by Gas Chromatography to Determine Short Term Hydrogen Cyanide Concentrations in a Field Setting. J. Sep. Sci. 2002, 25, 917–921.CrossRefGoogle Scholar
  47. 47.
    Hook, G. L.; Kimm, G.; Betsinger, G.; Savage, P. B.; Swift, A.; Logan, T.; Smith, P. A. Solid Phase Microextraction Sampling and Gas Chromatography/Mass Spectrometry for Field Detection of the Chemical Warfare Agent O-Ethyl S-(2-diisopropylaminoethyl) Methylphosphonothiolate (VX). J. Sep. Sci. 2003, 26, 1091–1096.CrossRefGoogle Scholar
  48. 48.
    Harvey, S. D.; Nelson, D. A.; Wright, B. W.; Grate, J. W. Selective Stationary Phase for Solid-Phase Microextraction Analysis of Sarin (GB). J. Chromatogr. A 2002, 954, 217–225.CrossRefGoogle Scholar
  49. 49.
    Schneider, J. F.; Boparai, A. S.; Reed, L. L. Screening for Sarin in Air and Water by Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry. J. Chromatogr. Sci. 2001, 39, 420–424.CrossRefGoogle Scholar
  50. 50.
    Lakso, H.-A.; Ng, W. F. Determination of Chemical Warfare Agents in Natural Water Samples by Solid-Phase Microextraction. Anal. Chem. 1997, 69, 1866–1872.CrossRefGoogle Scholar
  51. 51.
    Kimm, G. L.; Hook, G. L.; Smith, P. A. Application of Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry for Detection of the Chemical Warfare Agent Bis(2-chloroethyl) sulfide in Soil. J. Chromatogr. A 2002, 971, 185–191.CrossRefGoogle Scholar
  52. 52.
    Hook, G. L.; Kimm, G. L.; Koch, D.; Savage, P. B.; Bangwei, D.; Smith, P. A. Detection of VX Contamination in Soil Through Solid-Phase Microextraction Sampling and Gas Chromatography/Mass Spectrometry of the VX Degradation Product Bis(diisopropylaminoethyl)disulfide. J. Chromatogr. A 2003, 992, 1–9.CrossRefGoogle Scholar
  53. 53.
    Rearden, P.; Harrington, P. B. Rapid Screening of Precursor and Degradation Products of Chemical Warfare Agents in Soil by Solid-Phase Microextraction Ion Mobility Spectrometry (SPME-IMS). Anal. Chim. Acta 2005, 545, 13–20.CrossRefGoogle Scholar
  54. 54.
    Szostek, B.; Aldstadt, J. H. Determination of Organoarsenicals in the Environment by Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 1998, 807, 253–263.CrossRefGoogle Scholar
  55. 55.
    Wooten, J. V.; Ashley, D. L.; Calafat, A. M. Quantitation of 2-Chlorovinylarsonous Acid in Human Urine by Automated Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry. J. Chromatogr. B 2002, 772, 147–153.CrossRefGoogle Scholar
  56. 56.
    U.,S. EPA. Innovations in Site Characterization; EPA-542-R-98-006; Office of Solid Waste and Emergency Response: Washington, DC, September, 1998; p 48.Google Scholar
  57. 57.
    Arthur, C. L.; Pawliszyn, J. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Chem. 1990, 62, 2145–2148.CrossRefGoogle Scholar
  58. 58.
    Gorecki, T.; Pawliszyn, J. Sample Introduction Approaches for Solid Phase Microextraction Rapid GC. Anal. Chem. 1995, 67, 3265–3274.CrossRefGoogle Scholar
  59. 59.
    Gorecki, T.; Belkin, M.; Caruso, J.; Pawliszyn, J. Solid Phase Microextraction as Sample Introduction Technique for Radio Frequency Glow Discharge Mass Spectrometry. Anal. Commun. 1997, 34, 275–277.CrossRefGoogle Scholar
  60. 60.
    Grob, K.; Biedermann, M. The Two Options for Sample Evaporation in Hot GC Injectors: Thermospray and Band Formation Optimization of Conditions and Injector Design. Anal. Chem. 2002, 74, 10–16.CrossRefGoogle Scholar
  61. 61.
    Oliphant, J.; Tolley, S. E.; Later, D.; Lee, E. D.; Lee, M. L. Operation and Design Challenges for a Hand-Portable GC/TMS. Proceedings of the 56th Annual American Society for Mass Spectrometry Conference on Mass Spectrometry, Denver, CO, June 1–5, 2008.Google Scholar
  62. 62.
    U.S. EPA. Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater (Method 624-Purgeables). Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Jesse A. Contreras
    • 1
  • Jacolin A. Murray
    • 1
  • Samuel E. Tolley
    • 2
  • Joseph L. Oliphant
    • 2
  • H. Dennis Tolley
    • 1
  • Stephen A. Lammert
    • 1
    • 3
  • Edgar D. Lee
    • 2
  • Douglas W. Later
    • 2
  • Milton L. Lee
    • 1
  1. 1.Department of Chemistry and BiochemistryBrigham Young UniversityProvoUSA
  2. 2.Torion TechnologiesAmerican ForkUSA
  3. 3.Brigham Young UniversityUSA

Personalised recommendations