Journal of the American Society for Mass Spectrometry

, Volume 19, Issue 9, pp 1343–1346 | Cite as

Determining estrogens using surface-assisted laser desorption/ionization mass spectrometry with silver nanoparticles as the matrix

  • Tai-Chia Chiu
  • Lin-Chau Chang
  • Cheng-Kang Chiang
  • Huan-Tsung Chang
Application Note


We describe the application of silver nanoparticles (Ag NPs) as matrices for the determination of three estrogens using surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). Because Ag NPs have extremely high absorption coefficients (1.2 × 108 M−1 cm−1) at 337 nm, they are effective SALDI matrices when using a nitrogen laser. Three tested estrogens—estrone (E1), estradiol (E2), and estriol (E3)—adsorb weakly onto the surfaces of the Ag NPs, through van der Waals forces. After centrifugation, the concentrated analytes adsorbed on the Ag NPs were subjected directly to SALDI-MS analyses, with the limits of detection for E1, E2, and E3 being 2.23, 0.23, and 2.11 µM, respectively. The shot-to-shot and batch-to-batch variations for the three analytes were less than 9% and 13%, respectively. We validated the practicality of this present approach through the quantitation of E2 in human urine. Using this approach, we determined the concentration of E2 in a sample of a pregnant woman’s urine to be 0.16 ± 0.05 µM (n = 10).


  1. 1.
    Auranen, A.; Hietanen, S.; Salmi, T.; Grenman, S. Hormonal Treatments and Epithelial Ovarian Cancer Risk. Int. J. Gynecol. Cancer 2005, 15, 692–700.CrossRefGoogle Scholar
  2. 2.
    Spierto, F. W.; Gardner, F.; Smith, S. J. Evaluation of an EIA Method for Measuring Serum Levels of the Estrogen Metabolite 2-Hydroxyestrone in Adults. Steroids 2001, 66, 59–62.CrossRefGoogle Scholar
  3. 3.
    Almeida, C.; Nogueira, J. M. F. Determination of Steroid Sex Hormones in Water and Urine Matrices by Stir Bar Sorptive Extraction and Liquid Chromatography with Diode Array Detection. J. Pharm. Biomed. Anal. 2006, 41, 1303–1311.CrossRefGoogle Scholar
  4. 4.
    Su, P.; Zhang, X.-X.; Chang, W.-B. Development and Application of a Multi-Target Immunoaffinity Column for the Selective Extraction of Natural Estrogens from Pregnant Women’s Urine Samples by Capillary Electrophoresis. J. Chromatogr. B 2005, 816, 7–14.CrossRefGoogle Scholar
  5. 5.
    Xu, X.; Roman, J. M.; Veenstra, T. D.; Van Anda, J.; Ziegler, R. G.; Issaq, H. J. Analysis of Fifteen Estrogen Metabolites Using Packed Column Supercritical Fluid Chromatography-Mass Spectrometry. Anal. Chem. 2006, 78, 1553–1558.CrossRefGoogle Scholar
  6. 6.
    Szécsi, M.; Tóth, I.; Gardi, J.; Nyári, T.; Julesz, J. HPLC-RIA Analysis of Steroid Hormone Profile in a Virilizing Stromal Tumor of the Ovary. J. Biochem. Biophys. Methods 2004, 61, 47–56.CrossRefGoogle Scholar
  7. 7.
    Huang, Y.-F.; Chang, H.-T. Nile Red-Adsorbed Gold Nanoparticle Matrixes for Determining Aminothiols Through Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2006, 78, 1485–1493.CrossRefGoogle Scholar
  8. 8.
    Huang, Y.-F.; Chang, H.-T. Analysis of Adenosine Triphosphate and Glutathione through Gold Nanoparticles Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2007, 79, 4852–4859.CrossRefGoogle Scholar
  9. 9.
    Lee, K.-H.; Chiang, C.-K.; Lin, Z.-H.; Chang, H.-T. Determining Enediol Compounds in Tea Using Surface-Assisted Laser Desorption/Ionization Mass Spectrometry with Titanium Dioxide Nanoparticle Matrices. Rapid Commun. Mass Spectrom. 2007, 21, 2023–2030.CrossRefGoogle Scholar
  10. 10.
    Chiu, T.-C.; Huang, L.-S.; Lin, P.-C.; Chen, Y.-C.; Chen, Y.-J.; Lin, C.-C.; Chang, H.-T. Nanomaterial Based Affinity Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Biomolecules and Pathogenic Bacteria. Recent Patents Nanotechnol. 2007, 1, 99–111.CrossRefGoogle Scholar
  11. 11.
    Lee, P. C.; Meisel, D. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols. J. Phys. Chem. 1982, 86, 3391–3395.CrossRefGoogle Scholar
  12. 12.
    Huang, M.-F.; Kuo, Y.-C.; Huang, C.-C.; Chang, H.-T. Separation of Long Double-Stranded DNA by Nanoparticle-Filled Capillary Electrophoresis. Anal. Chem. 2004, 76, 192–196.CrossRefGoogle Scholar
  13. 13.
    Adlercreutz, H.; Kiuru, P.; Rasku, S.; Wähälä, K.; Fotsis, T. An Isotope Dilution Gas Chromatographic-Mass Spectrometric Method for the Simultaneous Assay of Estrogens and Phytoestrogens in Urine. J. Steroid Biochem. Mol. Biol. 2004, 92, 399–411.CrossRefGoogle Scholar
  14. 14.
    Xu, X.; Veenstra, T. D.; Fox, S. D.; Roman, J. M.; Issaq, H. J.; Falk, R.; Saavedra, J. E.; Keefer, L. K.; Ziegler, R. G. Measuring Fifteen Endogenous Estrogens Simultaneously in Human Urine by High-Performance Liquid Chromatography-Mass Spectrometry. Anal. Chem. 2005, 77, 6646–6654.CrossRefGoogle Scholar
  15. 15.
    Nghiem, L. D.; Schafer, A. I.; Waite, T. D. Adsorptive Interactions Between Membranes and Trace Contaminants. Desalination 2002, 147, 269–274.CrossRefGoogle Scholar
  16. 16.
    Yamamoto, H.; Liljestrand, H. M.; Shimizu, Y.; Morita, M. Effects of Physical-Chemical Characteristics on the Sorption of Selected Endocrine Disruptors by Dissolved Organic Matter Surrogates. Environ. Sci. Technol. 2003, 37, 2646–2657.CrossRefGoogle Scholar
  17. 17.
    Marrian, G. F. The Urinary Estrogens and Their Quantitative Determination. Cancer 1957, 10, 704–706.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Tai-Chia Chiu
    • 1
  • Lin-Chau Chang
    • 2
  • Cheng-Kang Chiang
    • 3
  • Huan-Tsung Chang
    • 3
  1. 1.Department of Nature Science and EducationNational Taitung UniversityTaitungTaiwan
  2. 2.School of Pharmacy, College of MedicineNational Taiwan UniversityTaipeiTaiwan
  3. 3.Department of ChemistryNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations