Journal of the American Society for Mass Spectrometry

, Volume 19, Issue 9, pp 1255–1262 | Cite as

Peptide and protein quantification using iTRAQ with electron transfer dissociation

  • Doug Phanstiel
  • Yi Zhang
  • Jarrod A. Marto
  • Joshua J. CoonEmail author


Electron transfer dissociation (ETD) has become increasingly used in proteomic analyses due to its complementarity to collision-activated dissociation (CAD) and its ability to sequence peptides with post-translation modifications (PTMs). It was previously unknown, however, whether ETD would be compatible with a commonly employed quantification technique, isobaric tags for relative and absolute quantification (iTRAQ), since the fragmentation mechanisms and pathways of ETD differ significantly from CAD. We demonstrate here that ETD of iTRAQ labeled peptides produces c-and ż-type fragment ions as well as reporter ions that are unique from those produced by CAD. Exact molecular formulas of product ions were determined by ETD fragmentation of iTRAQ-labeled synthetic peptides followed by high mass accuracy orbitrap mass analysis. These experiments revealed that ETD cleavage of the N-Cα bond of the iTRAQ tag results in fragment ions that could be used for quantification. Synthetic peptide work demonstrates that these fragment ions provide up to three channels of quantification and that the quality is similar to that provided by beam-type CAD. Protein standards were used to evaluate peptide and protein quantification of iTRAQ labeling in conjunction with ETD, beam-type CAD, and pulsed Q dissociation (PQD) on a hybrid ion trap-orbitrap mass spectrometer. For reporter ion intensities above a certain threshold all three strategies provided reliable peptide quantification (average error < 10%). Approximately 36%, 8%, and 16% of scans identified fall below this threshold for ETD, HCD, and PQD, respectively. At the protein level, average errors were 2.3%, 1.7%, and 3.6% for ETD, HCD, and PQD, respectively.


Electron Transfer Dissociation iTRAQ Label Orbitrap Mass Analysis Electron Transfer Dissociation Fragmentation Electron Transfer Dissociation Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ong, S. E.; Foster, L. J.; Mann, M. Mass Spectrometric-Based Approaches in Quantitative Proteomics. Methods 2003, 29, 124–130.CrossRefGoogle Scholar
  2. 2.
    Bantscheff, M.; Schirle, M.; Sweetman, G.; Rick, J.; Kuster, B. Quantitative Mass Spectrometry in Proteomics: A Critical Review. Anal. Bioanal. Chem. 2007, 389, 1017–1031.CrossRefGoogle Scholar
  3. 3.
    Aebersold, R.; Mann, M. Mass Spectrometry-Based Proteomics. Nature 2003, 422, 198–207.CrossRefGoogle Scholar
  4. 4.
    Heck, A. J. R.; Krijgsveld, J. Mass Spectrometry-Based Quantitative Proteomics. Expert Rev. Proteom. 2004, 1, 317–326.CrossRefGoogle Scholar
  5. 5.
    Righetti, P. G.; Campostrini, N.; Pascali, J.; Hamdan, M.; Astner, H. Quantitative Proteomics: A Review of Different Methodologies. Eur. J. Mass Spectrom. 2004, 10, 335–348.CrossRefGoogle Scholar
  6. 6.
    Ong, S. E.; Mann, M. Mass Spectrometry-Based Proteomics Turns Quantitative. Nat. Chem. Biol. 2005, 1, 252–262.CrossRefGoogle Scholar
  7. 7.
    Julka, S.; Regnier, F. Quantification in Proteomics Through Stable Isotope Coding: A Review. J. Proteome Res. 2004, 3, 350–363.CrossRefGoogle Scholar
  8. 8.
    Leitner, A.; Lindner, W. Chemistry Meets Proteomics: The Use of Chemical Tagging Reactions for MS-Based Proteomics. Proteomics 2006, 6, 5418–5434.CrossRefGoogle Scholar
  9. 9.
    Conrads, T. P.; Issaq, H. J.; Veenstra, T. D. New Tools for Quantitative Phosphoproteome Analysis. Biochem. Biophys. Res. Commun. 2002, 290, 885–890.CrossRefGoogle Scholar
  10. 10.
    Ong, S. E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandey, A.; Mann, M. Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics. Mol. Cell. Proteom. 2002, 1, 376–386.CrossRefGoogle Scholar
  11. 11.
    Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R. Quantitative Analysis of Complex Protein Mixtures Using Isotope-Coded Affinity Tags. Nat. Biotechnol. 1999, 17, 994–999.CrossRefGoogle Scholar
  12. 12.
    Oda, Y.; Huang, K.; Cross, F. R.; Cowburn, D.; Chait, B. T. Accurate Quantitation of Protein Expression and Site-Specific Phosphorylation. Proc. Nat. Acad. Sci. U.S.A. 1999, 96, 6591–6596.CrossRefGoogle Scholar
  13. 13.
    Ross, P. L.; Huang, Y. L. N.; Marchese, J. N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; Purkayastha, S.; Juhasz, P.; Martin, S.; Bartlet-Jones, M.; He, F.; Jacobson, A.; Pappin, D. J. Multiplexed Protein Quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteom. 2004, 3, 1154–1169.CrossRefGoogle Scholar
  14. 14.
    Goshe, M. B.; Conrads, T. P.; Panisko, E. A.; Angell, N. H.; Veenstra, T. D.; Smith, R. D. Phosphoprotein Isotope-Coded Affinity Tag Approach for Isolating and Quantitating Phosphopeptides in Proteome-Wide Analyses. Anal. Chem. 2001, 73, 2578–2586.CrossRefGoogle Scholar
  15. 15.
    Mirgorodskaya, O. A.; Kozmin, Y. P.; Titov, M. I.; Korner, R.; Sonksen, C. P.; Roepstorff, P. Quantitation of Peptides and Proteins by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Using O-18-Labeled Internal Standards. Rapid Commun. Mass Spectrom. 2000, 14, 1226–1232.CrossRefGoogle Scholar
  16. 16.
    Yao, X. D.; Freas, A.; Ramirez, J.; Demirev, P. A.; Fenselau, C. Proteolytic O-18 Labeling for Comparative Proteomics: Model Studies with Two Serotypes of Adenovirus. Anal. Chem. 2001, 73, 2836–2842.CrossRefGoogle Scholar
  17. 17.
    Pasa-Tolic, L.; Jensen, P. K.; Anderson, G. A.; Lipton, M. S.; Peden, K. K.; Martinovic, S.; Tolic, N.; Bruce, J. E.; Smith, R. D. High Throughput Proteome-Wide Precision Measurements of Protein Expression Using Mass Spectrometry. J. Am. Chem. Soc. 1999, 121, 7949–7950.CrossRefGoogle Scholar
  18. 18.
    Ishihama, Y.; Oda, Y.; Tabata, T.; Sato, T.; Nagasu, T.; Rappsilber, J.; Mann, M. Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides Per Protein. Mol. Cell. Proteom. 2005, 4, 1265–1272.CrossRefGoogle Scholar
  19. 19.
    Zhou, H. L.; Ranish, J. A.; Watts, J. D.; Aebersold, R. Quantitative Proteome Analysis by Solid-Phase Isotope Tagging and Mass Spectrometry. Nat. Biotechnol. 2002, 20, 512–515.CrossRefGoogle Scholar
  20. 20.
    Faca, V.; Coram, M.; Phanstiel, D.; Glukhova, V.; Zhang, Q.; Fitzgibbon, M.; McIntosh, M.; Hanash, S. Quantitative Analysis of Acrylamide Labeled Serum Proteins by LC-MS/MS. J. Proteome Res. 2006, 5, 2009–2018.CrossRefGoogle Scholar
  21. 21.
    Wu, C. C.; MacCoss, M. J.; Howell, K. E.; Matthews, D. E.; Yates, J. R. Metabolic Labeling of Mammalian Organisms with Stable Isotopes for Quantitative Proteomic Analysis. Anal. Chem. 2004, 76, 4951–4959.CrossRefGoogle Scholar
  22. 22.
    Schwartz, J. C.; Senko, M. W.; Syka, J. E. P. A Two-Dimensional Quadrupole Ion Trap Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2002, 13, 659–669.CrossRefGoogle Scholar
  23. 23.
    Domon, B.; Aebersold, R. Review—Mass Spectrometry and Protein Analysis. Science 2006, 312, 212–217.CrossRefGoogle Scholar
  24. 24.
    Olsen, J. V.; Macek, B.; Lange, O.; Makarov, A.; Horning, S.; Mann, M. Higher-Energy C-Trap Dissociation for Peptide Modification Analysis. Nature Methods 2007, 4, 709–712.CrossRefGoogle Scholar
  25. 25.
    Schwartz, J. C., Syka, J. P., Quarmby, S. T. Improving the Fundamentals of MSN on 2D Ion Traps: New Ion Activation and Isolation Techniques. Proceedings of the 53rd ASMS Conference on Mass Spectrometry; San Antonio, TX, June 2005.Google Scholar
  26. 26.
    Griffin, T. J.; Xie, H. W.; Bandhakavi, S.; Popko, J.; Mohan, A.; Carlis, J. V.; Higgins, L. iTRAQ Reagent-Based Quantitative Proteomic Analysis on a Linear Ion Trap Mass Spectrometer. J Proteome Res. 2007, 6, 4200–4209.CrossRefGoogle Scholar
  27. 27.
    Meany, D. L.; Xie, H. W.; Thompson, L. V.; Arriaga, E. A.; Griffin, T. J. Identification of Carbonylated Proteins from Enriched Rat Skeletal Muscle Mitochondria Using Affinity Chromatography-Stable Isotope Labeling and Tandem Mass Spectrometry. Proteomics 2007, 7, 1150–1163.CrossRefGoogle Scholar
  28. 28.
    Chi, A.; Huttenhower, C.; Geer, L. Y.; Coon, J. J.; Syka, J. E. P.; Bai, D. L.; Shabanowitz, J.; Burke, D. J.; Troyanskaya, O. G.; Hunt, D. F. Analysis of Phosphorylation Sites on Proteins from Saccharomyces cerevisiae by Electron Transfer Dissociation (ETD) Mass Spectrometry. Proc. Nat. Acad. Sci. U.S.A. 2007, 104, 2193–2198.CrossRefGoogle Scholar
  29. 29.
    Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Peptide and Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectrometry. Proc. Nat. Acad. Sci. U.S.A. 2004, 101, 9528–9533.CrossRefGoogle Scholar
  30. 30.
    Good, D. M.; Wirtala, M.; McAlister, G. C.; Coon, J. J. Performance Characteristics of Electron Transfer Dissociation Mass Spectrometry. Mol. Cell. Proteom. 2007, 6, 1942–1951.CrossRefGoogle Scholar
  31. 31.
    Molina, H.; Horn, D. M.; Tang, N.; Mathivanan, S.; Pandey, A. Global Proteomic Profiling of Phosphopeptides Using Electron Transfer Dissociation Tandem Mass Spectrometry. Proc. Nat. Acad. Sci. U.S.A. 2007, 104, 2199–2204.CrossRefGoogle Scholar
  32. 32.
    Kjeldsen, F.; Giessing, A. M. B.; Ingrell, C. R.; Jensen, O. N. Peptide Sequencing and Characterization of Post-Translational Modifications by Enhanced Ion-Charging and Liquid Chromatography Electron-Transfer Dissociation Tandem Mass Spectrometry. Anal. Chem. 2007, 79, 9243–9252.CrossRefGoogle Scholar
  33. 33.
    Mikesh, L. M.; Ueberheide, B.; Chi, A.; Coon, J. J.; Syka, J. E. P.; Shabanowitz, J.; Hunt, D. F. The Utility of ETD Mass Spectrometry in Proteomic Analysis. Biochim. Biophys. Acta Prot. Proteom. 2006, 1764, 1811–1822.CrossRefGoogle Scholar
  34. 34.
    Wu, S. L.; Huehmer, A. F. R.; Hao, Z. Q.; Karger, B. L. On-Line LC-MS Approach Combining Collision-Induced Dissociation (CID), Electron-Transfer Dissociation (ETD), and CID of an Isolated Charge-Reduced Species for the Trace-Level Characterization of Proteins with Post-Translational Modifications. J. Proteome Res. 2007, 6, 4230–4244.CrossRefGoogle Scholar
  35. 35.
    Gunawardena, H. P.; Emory, J. F.; McLuckey, S. A. Phosphopeptide Anion Characterization via Sequential Charge Inversion and Electron-Transfer Dissociation. Anal. Chem. 2006, 78, 3788–3793.CrossRefGoogle Scholar
  36. 36.
    Hogan, J. M.; Pitteri, S. J.; Chrisman, P. A.; McLuckey, S. A. Complementary Structural Information from a Tryptic N-Linked Glycopeptide via Electron Transfer Ion/Ion Reactions and Collision-Induced Dissociation. J. Proteome Res. 2005, 4, 628–632.CrossRefGoogle Scholar
  37. 37.
    Swaney, D. L.; McAlister, G. C.; Wirtala, M.; Schwartz, J. C.; Syka, J. E. P.; Coon, J. J. Supplemental Activation Method for High-Efficiency Electron-Transfer Dissociation of Doubly Protonated Peptide Precursors. Anal. Chem. 2007, 79, 477–485.CrossRefGoogle Scholar
  38. 38.
    McAlister, G. C.; Phanstiel, D.; Good, D. M.; Berggren, W. T.; Coon, J. J. Implementation of Electron-Transfer Dissociation on a Hybrid Linear Ion Trap Orbitrap Mass Spectrometer. Anal. Chem. 2007, 79, 3525–3534.CrossRefGoogle Scholar
  39. 39.
    McAlister, G. C.; Berggren, W. T.; Horning, S., Makarov, A.; Phanstiel, D.; Griep-Raming, J.; Stafford, G.; Swaney, D. L.; Syka, J. E. P.; Zabrouskov, V.; Coon, J. J. A Proteomics Grade Electron Transfer Dissociation-Enabled Hybrid Linear Ion Trap Orbitrap Mass Spectrometer. J. Proteome Res. (in press).Google Scholar
  40. 40.
    Geer, L. Y.; Markey, S. P.; Kowalak, J. A.; Wagner, L.; Xu, M.; Maynard, D. M.; Yang, X. Y.; Shi, W. Y.; Bryant, S. H. Open Mass Spectrometry Search Algorithm. J Proteome Res. 2004, 3, 958–964.CrossRefGoogle Scholar
  41. 41.
    Peng, J. M.; Elias, J. E.; Thoreen, C. C.; Licklider, L. J.; Gygi, S. P. Evaluation of Multidimensional Chromatography Coupled with Tandem Mass Spectrometry (LC/LC-MS/MS) for Large-Scale Protein Analysis: The Yeast Proteome. J. Proteome Res. 2003, 2, 43–50.CrossRefGoogle Scholar
  42. 42.
    Elias, J. E.; Gygi, S. P. Target-Decoy Search Strategy for Increased Confidence in Large-Scale Protein Identifications by Mass Spectrometry. Nature Methods 2007, 4, 207–214.CrossRefGoogle Scholar
  43. 43.
    McAlister, G. C.; Swaney, D.; Griep-Raming, J.; Makarov, A.; Lange, O.; Schwartz, J.C.; Syka, J. E. P.; Horning, S.; Stafford, G.; Coon, J. J. A Probabilistic Decision Tree-Driven Tandem Mass Spectrometer for Shotgun Proteomics. (submitted).Google Scholar

Copyright information

© American Society for Mass Spectrometry 2008

Authors and Affiliations

  • Doug Phanstiel
    • 1
  • Yi Zhang
    • 3
  • Jarrod A. Marto
    • 3
    • 4
  • Joshua J. Coon
    • 1
    • 2
    Email author
  1. 1.Department of ChemistryUniversity of WisconsinMadisonUSA
  2. 2.Department of Biomolecular ChemistryUniversity of WisconsinMadisonUSA
  3. 3.Department of Cancer Biology and Blais Proteomics CenterDana-Farber Cancer InstituteBostonUSA
  4. 4.Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUSA

Personalised recommendations